
WEB PROGR AMMING

Programming Google App Engine with Python

ISBN: 978-1-491-90025-3

US $44.99 CAN $51.99

“	The	first	edition	of	Dan's
book	was	a	crucial	
resource	for	years	when	
our	team	was	learning	
App	Engine.	This	latest	
edition	is	even	better—
it's	the	most	complete	
guide	available	for	those	
building	on	App	Engine,	
and	it'll	be	useful	to	
newcomers	and	old		
hats	alike.”

—Ben Kamens
lead dev at Khan Academy

“	Without	a	doubt,	the
most	comprehensive,	
well-written,	and	up-to-
date	book	written	about	
App	Engine.	I	think	it's	
fair	to	say	that	if	you've	
read	this	book	cover-
to-cover,	you're	now	an	
expert	on	App	Engine.”

—Kevin Gibbs
former tech lead and manager,

Google App Engine

Twitter: @oreillymedia
facebook.com/oreilly

This practical guide shows intermediate and advanced web and mobile
app developers how to build highly scalable Python applications in the
cloud with Google App Engine. The flagship of Google's Cloud Platform,
App Engine hosts your app on infrastructure that grows automatically with
your traffic, minimizing up-front costs and accommodating unexpected
visitors. You’ll learn hands-on how to perform common development tasks
with App Engine services and development tools, including deployment
and maintenance.

App Engine's Python support includes a fast Python 2.7 interpreter, the
standard library, and a WSGI-based runtime environment. Choose from
many popular web application frameworks, including Django and Flask.

■ Get a hands-on introduction to App Engine's tools and
features, using an example application

■ Simulate App Engine on your development machine with tools
from Google Cloud SDK

■ Structure your app into individually addressable modules, each
with its own scaling configuration

■ Exploit the power of the scalable Cloud Datastore, using
queries, transactions, and data modeling with the ndb library

■ Use Cloud SQL for standard relational databases with App
Engine applications

■ Learn how to deploy, manage, and inspect your application
on Google infrastructure

Dan Sanderson is a software engineer at Google Inc. He has worked in the web
industry for over fifteen years as a software engineer and technical writer for
Google, Amazon.com, and the Walt Disney Internet Group.

Dan Sanderson

Programming
 Google
App Engine
with Python
BUILD & RUN SCALABLE PYTHON APPS
ON GOOGLE'S INFRASTRUCTURE

Program
m

ing G
oogle A

pp E
ngine

w
ith Python

Sanderson

www.it-ebooks.info

http://www.it-ebooks.info/

WEB PROGR AMMING

Programming Google App Engine with Python

ISBN: 978-1-491-90025-3

US $44.99 CAN $51.99

“	The	first	edition	of	Dan's
book	was	a	crucial	
resource	for	years	when	
our	team	was	learning	
App	Engine.	This	latest	
edition	is	even	better—
it's	the	most	complete	
guide	available	for	those	
building	on	App	Engine,	
and	it'll	be	useful	to	
newcomers	and	old		
hats	alike.”

—Ben Kamens
lead dev at Khan Academy

“	Without	a	doubt,	the
most	comprehensive,	
well-written,	and	up-to-
date	book	written	about	
App	Engine.	I	think	it's	
fair	to	say	that	if	you've	
read	this	book	cover-
to-cover,	you're	now	an	
expert	on	App	Engine.”

—Kevin Gibbs
former tech lead and manager,

Google App Engine

Twitter: @oreillymedia
facebook.com/oreilly

This practical guide shows intermediate and advanced web and mobile
app developers how to build highly scalable Python applications in the
cloud with Google App Engine. The flagship of Google's Cloud Platform,
App Engine hosts your app on infrastructure that grows automatically with
your traffic, minimizing up-front costs and accommodating unexpected
visitors. You’ll learn hands-on how to perform common development tasks
with App Engine services and development tools, including deployment
and maintenance.

App Engine's Python support includes a fast Python 2.7 interpreter, the
standard library, and a WSGI-based runtime environment. Choose from
many popular web application frameworks, including Django and Flask.

■ Get a hands-on introduction to App Engine's tools and
features, using an example application

■ Simulate App Engine on your development machine with tools
from Google Cloud SDK

■ Structure your app into individually addressable modules, each
with its own scaling configuration

■ Exploit the power of the scalable Cloud Datastore, using
queries, transactions, and data modeling with the ndb library

■ Use Cloud SQL for standard relational databases with App
Engine applications

■ Learn how to deploy, manage, and inspect your application
on Google infrastructure

Dan Sanderson is a software engineer at Google Inc. He has worked in the web
industry for over fifteen years as a software engineer and technical writer for
Google, Amazon.com, and the Walt Disney Internet Group.

Dan Sanderson

Programming
 Google
App Engine
with Python
BUILD & RUN SCALABLE PYTHON APPS
ON GOOGLE'S INFRASTRUCTURE

Program
m

ing G
oogle A

pp E
ngine

w
ith Python

Sanderson

www.it-ebooks.info

http://www.it-ebooks.info/

Dan Sanderson

Boston

Programming Google App Engine
with Python

www.it-ebooks.info

http://www.it-ebooks.info/

978-1-491-90025-3

[LSI]

Programming Google App Engine with Python
by Dan Sanderson

Copyright © 2015 Dan Sanderson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette and Brian Anderson
Acquisition Editor: Mike Loukides
Production Editors: Colleen Lobner and Kara
Ebrahim
Copyeditor: Jasmine Kwityn

Proofreader: Charles Roumeliotis
Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

June 2015: First Edition

Revision History for the First Edition
2015-06-17: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491900253 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Programming Google App Engine with
Python, the cover image of a four-lined snake, and related trade dress are trademarks of O’Reilly Media,
Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.it-ebooks.info

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491900253
http://www.it-ebooks.info/

Table of Contents

Preface. xi

1. Introducing Google App Engine. 1
The Runtime Environment 2
The Static File Servers 4
Frontend Caches 5
Cloud Datastore 5

Entities and Properties 6
Queries and Indexes 7
Transactions 8

The Services 9
Google Accounts, OpenID, and OAuth 11
Google Cloud Endpoints 12
Task Queues and Cron Jobs 12
Namespaces 14
Developer Tools 14
The Cloud Console 15
Getting Started 16

2. Creating an Application. 17
Setting Up the Cloud SDK 17

Installing Python 18
Installing the Cloud SDK 19
Authenticating with the Cloud SDK 20
Installing the App Engine SDK 21

Developing the Application 21
The User Preferences Pattern 22
A Simple App 23

iii

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the webapp Framework 26
Templates, Users, and Google Accounts 28
Using Python Virtual Environments 34
Datastore Models and Web Forms 38
The Development Server Console 42
Caching with Memcache 43
The Python Interactive Console 44

Registering the Application 45
Uploading the Application 45
Testing the App 46
Enabling Billing 48

3. Configuring an Application. 49
The App Engine Architecture 50
Configuring a Python App 52

Runtime Versions 53
App IDs and Versions 54
Multithreading 55
Request Handlers 55
Static Files and Resource Files 58

MIME Types 60
Cache Expiration 60

Domain Names 62
Google Apps 64
Configuring Secure Connections 67
Secure Connections with Custom Domains 69
Authorization with Google Accounts 71
Environment Variables 72
Inbound Services 73
Custom Error Responses 74
Python Libraries 75
Built-in Handlers 78
Includes 79

4. Request Handlers and Instances. 81
The Runtime Environment 82

The Sandbox 83
Quotas and Limits 84
The Python Runtime Environment 90

The Request Handler Abstraction 92
Introducing Instances 95
Request Scheduling and Pending Latency 97

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Warmup Requests 98
Resident Instances 99
Instance Classes and Utilization 101
Instance Hours and Billing 102
The Instances Console Panel 102
Traffic Splitting 104

5. Using Modules. 105
An Example Layout 106
Configuring Modules 107
Manual and Basic Scaling 108

Manual Scaling and Versions 109
Startup Requests 110
Shutdown Hooks 111
Background Threads 112
Modules and the Development Server 113
Deploying Modules 114
Addressing Modules with URLs 115

Calling Modules from Other Modules 116
Module URLs and Secure Connections 118
Module URLs and Custom Domains 118

Dispatching Requests to Modules 119
Starting and Stopping Modules 120
Managing and Deleting Modules and Versions 120
The Modules API 121
An Always-On Example 123

6. Datastore Entities. 125
Entities, Keys, and Properties 126
Introducing the Python Datastore API 128
Property Values 132

Strings, Text, and Bytes 133
Unset Versus the Null Value 134
Multivalued Properties 134

Keys and Key Objects 135
Using Entities 137

Getting Entities Using Keys 137
Inspecting Entity Objects 138
Saving Entities 139
Deleting Entities 140

Allocating System IDs 140
The Development Server and the Datastore 142

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

7. Datastore Queries. 143
Queries and Kinds 144
Query Results and Keys 144
The Query API 145

The Query Class 146
GQL 149
Retrieving Results 153
Keys-Only Queries 155

Introducing Indexes 156
Automatic Indexes and Simple Queries 158

All Entities of a Kind 158
One Equality Filter 159
Greater-Than and Less-Than Filters 160
One Sort Order 161
Queries on Keys 163
Kindless Queries 164

Custom Indexes and Complex Queries 165
Multiple Sort Orders 165
Filters on Multiple Properties 166
Multiple Equality Filters 169

Not-Equal and IN Filters 172
Unset and Nonindexed Properties 173
Sort Orders and Value Types 174
Queries and Multivalued Properties 175

MVPs in Code 175
MVPs and Equality Filters 177
MVPs and Inequality Filters 178
MVPs and Sort Orders 180
Exploding Indexes 182

Query Cursors 182
Projection Queries 186
Configuring Indexes 189

8. Datastore Transactions. 193
Entities and Entity Groups 195

Keys, Paths, and Ancestors 197
Ancestor Queries 199

What Can Happen in a Transaction 200
Transactional Reads 201
Eventually Consistent Reads 201

Transactions in Python 202
How Entities Are Updated 205

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

How Entities Are Read 208
Batch Updates 208
How Indexes Are Updated 209
Cross-Group Transactions 211

9. Data Modeling with ndb. 213
Models and Properties 214
Property Declarations 216

Property Value Types 216
Property Validation 217
Nonindexed Properties 219
Automatic Values 220
Repeated Properties 221
Serialized Properties 222
Structured Properties 224
Computed Properties 225
Models and Schema Migration 226

Modeling Relationships 226
Model Inheritance 227
Queries and PolyModels 229
Creating Your Own Property Classes 231

Validating Property Values 231
Marshaling Value Types 233
Accepting Arguments 235
Implementing Automatic Values 236

Automatic Batching 238
Automatic Caching 239

Setting the Cache Policy for a Kind 241
More Complex Cache Policies 242
Ignoring Caches per Call 243

10. Datastore Administration. 245
Inspecting the Datastore 245
Managing Indexes 248
Accessing Metadata from the App 249

Querying Statistics 250
Querying Metadata 251
Index Status and Queries 252
Entity Group Versions 253

Remote Controls 253
Setting Up the Remote API 254
Using the Remote Shell Tool 255

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Remote API from a Script 256

11. Using Google Cloud SQL with App Engine. 259
Choosing a Cloud SQL Instance 260
Installing MySQL Locally 261
Installing the MySQLdb Library 262
Creating a Cloud SQL Instance 263
Connecting to an Instance from Your Computer 265
Setting Up a Database 267
Connecting to the Database from App Engine 269
Backup and Restore 274
Exporting and Importing Data 274
The gcloud sql Commands 275

12. The Memory Cache. 277
Calling Memcache from Python 279
Keys and Values 279
Setting Values 280

Setting Values That Expire 280
Adding and Replacing Values 281

Getting Values 281
Deleting Values 282

Locking a Deleted Key 282
Atomic Increment and Decrement 282
Compare and Set 283
Batching Calls to Memcache 284
Memcache Administration 287

Cache Statistics 288
Flushing the Memcache 289

13. Fetching URLs and Web Resources. 291
Fetching URLs 293
Outgoing HTTP Requests 294

The URL 294
The HTTP Method and Payload 295
Request Headers 295

HTTP over SSL (HTTPS) 296
Request and Response Sizes 296
Request Deadlines 297
Handling Redirects 297
Response Objects 298

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

14. Sending and Receiving Email Messages. 299
Sending Email Messages 301

Sending Email from the Development Server 302
Sender Addresses 302
Recipients 304
Attachments 304
Sending Email 305

Receiving Email Messages 308

15. Sending and Receiving Instant Messages with XMPP. 313
Inviting a User to Chat 315
Sending Chat Messages 316
Receiving Chat Messages 318

Handling Commands over Chat 320
Handling Error Messages 321
Managing Presence 322

Managing Subscriptions 323
Managing Presence Updates 325
Probing for Presence 328

16. Task Queues and Scheduled Tasks. 331
Configuring Task Queues 334
Enqueuing a Task 335
Task Parameters 337

Payloads 337
Task Names 338
Countdowns and ETAs 339

Push Queues 340
Task Requests 340
Processing Rates and Token Buckets 342
Retrying Push Tasks 344

Pull Queues 345
Enqueuing Tasks to Pull Queues 346
Leasing and Deleting Tasks 346
Retrying Pull Queue Tasks 347

Transactional Task Enqueueing 348
Task Chaining 350
Task Queue Administration 356
Deferring Work 356
Scheduled Tasks 358

Configuring Scheduled Tasks 360
Specifying Schedules 361

Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

17. Optimizing Service Calls. 363
Calling Services Asynchronously 364

Asynchronous Calls in Python 366
Visualizing Calls with AppStats 375

Installing AppStats 378
Using the AppStats Console 380

18. The Django Web Application Framework. 383
Using the Bundled Django Library 385
Creating a Django Project 386
Hooking It Up to App Engine 387
Creating a Django App 389
Using Django Templates 391
Using ndb with Django 392
Using WTForms with ndb 393
Using a Newer Version of Django 400
Using Django with Google Cloud SQL 401

19. Managing Request Logs. 405
Writing to the Log 406
Viewing Recent Logs 407
Downloading Logs 409
Logs Retention 410
Querying Logs from the App 410
Flushing the Log Buffer 412

20. Deploying and Managing Applications. 415
Uploading an Application 416
Using Versions 416
Managing Service Configuration 419
App Engine Settings 419
Managing Developers 420
Quotas and Billing 421
Getting Help 422

Index. 425

x | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

On the Internet, popularity is swift and fleeting. A mention of your website on a pop‐
ular news site can bring 300,000 potential customers your way at once, all expecting
to find out who you are and what you have to offer. But if you’re a small company just
starting out, your hardware and software aren’t likely to be able to handle that kind of
traffic. You’ve sensibly built your site to handle the 30,000 visits per hour you’re
actually expecting in your first six months. Under heavy load, such a system would be
incapable of showing even your company logo to the 270,000 others that showed up
to look around. And those potential customers are not likely to come back after the
traffic has subsided.

The answer is not to spend time and money building a system to serve millions of
visitors on the first day, when those same systems are only expected to serve mere
thousands per day for the subsequent months. If you delay your launch to build big,
you miss the opportunity to improve your product by using feedback from your cus‐
tomers. Building big early risks building something your customers don’t want.

Historically, small companies haven’t had access to large systems of servers on day
one. The best they could do was to build small and hope that meltdowns wouldn’t
damage their reputation as they try to grow. The lucky ones found their audience, got
another round of funding, and halted feature development to rebuild their product
for larger capacity. The unlucky ones, well, didn’t.

These days, there are other options. Large Internet companies such as Amazon.com,
Google, and Microsoft are leasing parts of their high-capacity systems by using a pay-
per-use model. Your website is served from those large systems, which are plenty
capable of handling sudden surges in traffic and ongoing success. And because you
pay only for what you use, there is no up-front investment that goes to waste when
traffic is low. As your customer base grows, the costs grow proportionally.

Google’s offering, collectively known as Google Cloud Platform, consists of a suite of
high-powered services and tools: virtual machines in a variety of sizes, multiple forms
of reliable data storage, configurable networking, automatic scaling infrastructure,

xi

www.it-ebooks.info

http://www.it-ebooks.info/

and even the big data analysis tools that power Google’s products. But Google Cloud
Platform does more than provide access to Google’s infrastructure. It encapsulates
best practices for application architecture that have been honed by Google engineers
for their own products.

The centerpiece of Google Cloud Platform is Google App Engine, an application
hosting service that grows automatically. App Engine runs your application so that
each user who accesses it gets the same experience as every other user, whether there
are dozens of simultaneous users or thousands. Your application code focuses on each
individual user’s experience. App Engine takes care of large-scale computing tasks—
such as load balancing, data replication, and fault tolerance—automatically.

The scalable model really kicks in at the point where a traditional system would out‐
grow its first database server. With such a system, adding load-balanced web servers
and caching layers can get you pretty far, but when your application needs to write
data to more than one place, you face a difficult problem. This problem is made more
difficult when development up to that point has relied on features of database soft‐
ware that were never intended for data distributed across multiple machines. By
thinking about your data in terms of Cloud Platform’s model up front, you save your‐
self from having to rebuild the whole thing later.

Often overlooked as an advantage, App Engine’s execution model helps to distribute
computation as well as data. App Engine excels at allocating computing resources to
small tasks quickly. This was originally designed for handling web requests from
users, where generating a response for the client is the top priority. Combining this
execution model with Cloud Platform’s task queue service, medium-to-large compu‐
tational tasks can be broken into chunks that are executed in parallel. Tasks are
retried until they succeed, making tasks resilient in the face of service failures. The
execution model encourages designs optimized for the parallelization and robustness
provided by the platform.

Running on Google’s infrastructure means you never have to set up a server, replace a
failed hard drive, or troubleshoot a network card. You don’t have to be woken up in
the middle of the night by a screaming pager because an ISP hiccup confused a ser‐
vice alarm. And with automatic scaling, you don’t have to scramble to set up new
hardware as traffic increases.

Google Cloud Platform and App Engine let you focus on your application’s function‐
ality and user experience. You can launch early, enjoy the flood of attention, retain
customers, and start improving your product with the help of your users. Your app
grows with the size of your audience—up to Google-sized proportions—without hav‐
ing to rebuild for a new architecture. Meanwhile, your competitors are still putting
out fires and configuring databases.

xii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

With this book, you will learn how to develop web applications that run on Google
Cloud Platform, and how to get the most out of App Engine’s scalable execution
model. A significant portion of the book discusses Google Cloud Datastore, a power‐
ful data storage service that does not behave like the relational databases that have
been a staple of web development for the past decade. The application model and the
datastore together represent a new way of thinking about web applications that, while
being almost as simple as the model we’ve known, requires reconsidering a few prin‐
ciples we often take for granted.

A Brief History of App Engine
If you read all that, you may be wondering why this book is called Programming Goo‐
gle App Engine and not Programming Google Cloud Platform. The short answer is that
the capabilities of the platform as a whole are too broad for one book. In particular,
Compute Engine, the platform’s raw virtual machine capability, can do all kinds of
stuff beyond serving web applications.

By some accounts (mine, at least), App Engine started as an early rendition of the
Cloud Platform idea, and evolved and expanded to include large-scale and flexible-
scale computing. When it first launched in 2008, App Engine hosted web applications
written in Python, with APIs for a scalable datastore, a task queue service, and serv‐
ices for common features that lay outside of the “container” in which the app code
would run (such as network access). A “runtime environment” for Java soon fol‐
lowed, capable of running web apps based on Java servlets using the same scalable
infrastructure. Container-ized app code, schemaless data storage, and service-
oriented architecture proved to be not only a good way to build a scalable web app,
but a good way to make reliability a key part of the App Engine product: no more
pagers.

App Engine evolved continuously, with several major functionality milestones. One
such milestone was a big upgrade for the datastore, using a new Paxos-based replica‐
tion algorithm. The new algorithm changed the data consistency guarantees of the
API, so it was released as an opt-in migration (including an automatic migration
tool). Another major milestone was the switch from isolated request handlers billed
by CPU usage to long-running application instances billed by instance uptime. With
the upgraded execution model, app code could push “warm-up” work to occur out‐
side of user request logic and exploit local memory caches.

Google launched Compute Engine as a separate product, a way to access computation
on demand for general purposes. With a Compute Engine VM, you can run any 64-
bit Linux-based operating system and execute code written in any language compiled
to (or interpreted by) that OS. Apps—running on App Engine or otherwise—can call
into Compute Engine to start up any number of virtual machines, do work, and

Preface | xiii

www.it-ebooks.info

http://www.it-ebooks.info/

either shut down machines when no longer needed or leave them running in tradi‐
tional or custom configurations.

App Engine and Compute Engine take different approaches to provide different capa‐
bilities. But these technologies are already starting to blend. In early 2014, Google
announced Managed VMs, a new way to run VM-based code in an App Engine-like
way. (This feature is not fully available as I write this, but check the Google Cloud
Platform website for updates.) Overall, you’re able to adopt as much of the platform
as you need to accomplish your goals, investing in flexibility when needed, and letting
the platform’s automaticity handle the rest.

This book is being written at a turning point in App Engine’s history. Services that
were originally built for App Engine are being generalized for Cloud Platform, and
given REST APIs so you can call them from off the platform as well. App Engine
development tools are being expanded, with a new universal Cloud SDK and Cloud
Console. We’re even seeing the beginnings of new ways to develop and deploy soft‐
ware, with integrated Git-based source code revision control. As with any book about
an evolving technology, what follows is a snapshot, with an emphasis on major con‐
cepts and long-lasting topics.

The focus of this book is building web applications using App Engine and related
parts of the platform, especially Cloud Datastore. We’ll discuss services currently
exclusive to App Engine, such as those for fetching URLs and sending email. We’ll
also discuss techniques for organizing and optimizing your application, using task
queues and offline processes, and otherwise getting the most out of Google App
Engine.

Using This Book
Programming Google App Engine with Python covers App Engine’s runtime environ‐
ment for the Python programming language. The Python runtime environment pro‐
vides a fast interpreter for the Python language, and includes Python libraries for all
of App Engine’s features. It is compatible with many major open source web applica‐
tion frameworks, such as Django and Flask.

App Engine supports three other runtime environments: Java, PHP, and Go. Java sup‐
port includes a complete Java servlet environment, with a JVM capable of running
bytecode produced by compilers for Java and other languages. The PHP environment
runs a native PHP interpreter with the standard library and many extensions enabled,
and is capable of running many off-the-shelf PHP applications such as WordPress
and Drupal. With the Go runtime environment, App Engine compiles your Go code
on the server and executes it at native CPU speeds.

xiv | Preface

www.it-ebooks.info

https://cloud.google.com
https://cloud.google.com
http://www.it-ebooks.info/

The information contained in this book was formerly presented in a single volume,
Programming Google App Engine, which also covered Java. To make it easy to find the
information you need for your language, that book has been split into language-
specific versions. You are reading the Python version. Programming Google App
Engine with Java covers the same material using the Java language, as well as Java-
specific topics.

We are considering PHP and Go versions of this book as a future endeavor. For now,
the official App Engine documentation is the best resource for using these languages
on the platform. If you’re interested in seeing versions of this book for PHP or Go, let
us know by sending email to bookquestions@oreilly.com.

The book is organized so you can jump to the subjects that are most relevant to you.
The introductory chapters provide a lay of the land, and get you working with a com‐
plete example that uses several features. Subsequent chapters are arranged by App
Engine’s various features, with a focus on efficient data storage and retrieval, commu‐
nication, and distributed computation. Project life cycle topics such as deployment
and maintenance are also covered.

Cloud Datastore is a large enough subject that it gets multiple chapters to itself. Start‐
ing with Chapter 6, datastore concepts are introduced alongside Python APIs related
to those concepts. Python examples use the ndb data modeling library, provided in
the Cloud SDK. Data modeling gets its own chapter, in Chapter 9.

Here’s a quick look at the chapters in this book:

Chapter 1, Introducing Google App Engine
A high-level overview of Google App Engine and its components, tools, and
major features, as well as an introduction to Google Cloud Platform as a whole.

Chapter 2, Creating an Application
An introductory tutorial in Python, including instructions on setting up a devel‐
opment environment, using template engines to build web pages, setting up
accounts and domain names, and deploying the application to App Engine. The
tutorial application demonstrates the use of several App Engine features—Google
Accounts, the datastore, and memcache—to implement a pattern common to
many web applications: storing and retrieving user preferences.

Chapter 3, Configuring an Application
A description of how App Engine handles incoming requests, and how to config‐
ure this behavior. This introduces App Engine’s architecture, the various features
of the frontend, app servers, and static file servers. We explain how the frontend
routes requests to the app servers and the static file servers, and manages secure
connections and Google Accounts authentication and authorization. This chapter
also discusses quotas and limits, and how to raise them by setting a budget.

Preface | xv

www.it-ebooks.info

https://cloud.google.com/appengine/
mailto:bookquestions@oreilly.com
http://www.it-ebooks.info/

Chapter 4, Request Handlers and Instances
A closer examination of how App Engine runs your code. App Engine routes
incoming web requests to request handlers. Request handlers run in long-lived
containers called instances. App Engine creates and destroys instances to accom‐
modate the needs of your traffic. You can make better use of your instances by
writing threadsafe code and enabling the multithreading feature.

Chapter 5, Using Modules
Modules let you build your application as a collection of parts, where each part
has its own scaling properties and performance characteristics. This chapter
describes modules in full, including the various scaling options, configuration,
and the tools and APIs you use to maintain the modules of your app.

Chapter 6, Datastore Entities
The first of several chapters on Cloud Datastore, a scalable object data storage
system with support for local transactions and two modes of consistency guaran‐
tees (strong and eventual). This chapter introduces data entities, keys and prop‐
erties, and Python APIs for creating, updating, and deleting entities from App
Engine.

Chapter 7, Datastore Queries
An introduction to Cloud Datastore queries and indexes, and the Python APIs
for queries. This chapter describes the features of the query engine in detail, and
how each feature uses indexes. The chapter also discusses how to define and
manage indexes for your application’s queries. Advanced features like query cur‐
sors and projection queries are also covered.

Chapter 8, Datastore Transactions
How to use transactions to keep your data consistent. Cloud Datastore uses local
transactions in a scalable environment. Your app arranges its entities in units of
transactionality known as entity groups. This chapter attempts to provide a com‐
plete explanation of how the datastore updates data, and how to design your data
and your app to best take advantage of these features.

Chapter 9, Data Modeling with ndb
How to use the Python ndb data modeling library to enforce invariants in your
data schema. The datastore itself is schemaless, a fundamental aspect of its scala‐
bility. You can automate the enforcement of data schemas by using App Engine’s
data modeling interface.

Chapter 10, Datastore Administration
Managing and evolving your app’s datastore data. The Cloud Console, SDK tools,
and administrative APIs provide a myriad of views of your data, and information
about your data (metadata and statistics). You can access much of this informa‐
tion programmatically, so you can build your own administration panels. This

xvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

chapter also discusses how to use the Remote API, a proxy for building adminis‐
trative tools that run on your local computer but access the live services for your
app.

Chapter 11, Using Google Cloud SQL with App Engine
Google Cloud SQL provides fully managed MySQL database instances. You can
use Cloud SQL as a relational database for your App Engine applications. This
chapter walks through an example of creating a SQL instance, setting up a data‐
base, preparing a local development environment, and connecting to Cloud SQL
from App Engine. We also discuss prominent features of Cloud SQL such as
backups, and exporting and importing data. Cloud SQL complements Cloud
Datastore and Cloud Storage as a new choice for persistent storage, and is a pow‐
erful option when you need a relational database.

Chapter 12, The Memory Cache
App Engine’s memory cache service (“memcache”), and its Python APIs. Aggres‐
sive caching is essential for high-performance web applications.

Chapter 13, Fetching URLs and Web Resources
How to access other resources on the Internet via HTTP by using the URL Fetch
service. Python applications can call this service using a direct API as well as via
Python’s standard library.

Chapter 14, Sending and Receiving Email Messages
How to use App Engine services to send email. This chapter covers receiving
email relayed by App Engine by using request handlers. It also discusses creating
and processing messages by using tools in the API.

Chapter 15, Sending and Receiving Instant Messages with XMPP
How to use App Engine services to send instant messages to XMPP-compatible
services (such as Google Talk), and receive XMPP messages via request handlers.
This chapter discusses several major XMPP activities, including managing pres‐
ence.

Chapter 16, Task Queues and Scheduled Tasks
How to perform work outside of user requests by using task queues. Task queues
perform tasks in parallel by running your code on multiple application servers.
You control the processing rate with configuration. Tasks can also be executed on
a regular schedule with no user interaction.

Chapter 17, Optimizing Service Calls
A summary of optimization techniques, plus detailed information on how to
make asynchronous service calls, so your app can continue doing work while
services process data in the background. This chapter also describes AppStats, an

Preface | xvii

www.it-ebooks.info

http://www.it-ebooks.info/

important tool for visualizing your app’s service call behavior and finding perfor‐
mance bottlenecks.

Chapter 18, The Django Web Application Framework
How to use the Django web application framework with the Python runtime
environment. This chapter discusses setting up a project by using the Django 1.5
library included in the runtime environment, and using Django features such as
component composition, URL mapping, views, and templating. It also discusses
how to use a newer version of Django than what is built into the runtime envi‐
ronment. The chapter introduces WTForms, a web form framework with special
features for integrating with App Engine’s ndb data modeling library.

Chapter 19, Managing Request Logs
Everything you need to know about logging messages, browsing and searching
log data in the Cloud Console, and managing and downloading log data. This
chapter also introduces the Logs API, which lets you manage logs programmati‐
cally within the app itself.

Chapter 20, Deploying and Managing Applications
How to upload and run your app on App Engine, how to update and test an
application using app versions, and how to manage and inspect the running
application. This chapter also introduces other maintenance features of the
Cloud Console, including billing. The chapter concludes with a list of places to
go for help and further reading.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

xviii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

Preface | xix

www.it-ebooks.info

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://www.it-ebooks.info/

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/google-app-python.

You can download extensive sample code and other extras from the author’s website
at http://www.dansanderson.com/appengine.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I am indebted to the App Engine team for their constant support of this book since its
inception in 2008. The number of contributors to App Engine has grown too large for
me to list them individually, but I’m grateful to them all for their vision, their creativ‐
ity, and their work, and for letting me be a part of it.

Programming Google App Engine, from which this book is derived, was developed
under the leadership of Paul McDonald and Pete Koomen. Ryan Barrett provided
many hours of conversation and detailed technical review. Max Ross and Rafe Kaplan
contributed material and provided extensive review to the datastore chapters. Thanks
to Matthew Blain, Michael Davidson, Alex Gaysinsky, Peter McKenzie, Don Schwarz,
and Jeffrey Scudder for reviewing portions of the first edition in detail, as well as Sean
Lynch, Brett Slatkin, Mike Repass, and Guido van Rossum for their support.

For the second edition, I want to thank Peter Magnusson, Greg D’alesandre, Tom Van
Waardhuizen, Mike Aizatsky, Wesley Chun, Johan Euphrosine, Alfred Fuller, Andrew
Gerrand, Sebastian Kreft, Moishe Lettvin, John Mulhausen, Robert Schuppenies,
David Symonds, and Eric Willigers.

Substantial effort was required to separate the original book into two books. My
thanks to Mike Fotinakis for reviewing the Python version, and to Amy Unruh and
Mark Combellack for reviewing the Java version.

Thanks also to Sahala Swenson, Steven Hines, David McLaughlin, Mike Winton,
Andres Ferrate, Dan Morrill, Mark Pilgrim, Steffi Wu, Karen Wickre, Jane Penner,
Jon Murchinson, Tom Stocky, Vic Gundotra, Bill Coughran, and Alan Eustace.

xx | Preface

www.it-ebooks.info

http://bit.ly/google-app-python
http://www.dansanderson.com/appengine
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

At O’Reilly, I’d like to thank Michael Loukides, Meghan Blanchette, and Brian Ander‐
son for giving me this opportunity and helping me see it through to the end, three
times over.

I dedicate this book to Google’s site reliability engineers. It is they who carry the pag‐
ers, so we don’t have to. We are forever grateful.

Preface | xxi

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introducing Google App Engine

Google App Engine is a web application hosting service. By “web application,” we
mean an application or service accessed over the Web, usually with a web browser:
storefronts with shopping carts, social networking sites, multiplayer games, mobile
applications, survey applications, project management, collaboration, publishing, and
all the other things we’re discovering are good uses for the Web. App Engine can
serve traditional website content too, such as documents and images, but the environ‐
ment is especially designed for real-time dynamic applications. Of course, a web
browser is merely one kind of client: web application infrastructure is well suited to
mobile applications, as well.

In particular, Google App Engine is designed to host applications with many simulta‐
neous users. When an application can serve many simultaneous users without
degrading performance, we say it scales. Applications written for App Engine scale
automatically. As more people use the application, App Engine allocates more resour‐
ces for the application and manages the use of those resources. The application itself
does not need to know anything about the resources it is using. x Unlike traditional
web hosting or self-managed servers, with Google App Engine, you only pay for the
resources you use. Billed resources include CPU usage, storage per month, incoming
and outgoing bandwidth, and several resources specific to App Engine services. To
help you get started, every developer gets a certain amount of resources for free,
enough for small applications with low traffic.

App Engine is part of Google Cloud Platform, a suite of services for running scalable
applications, performing large amounts of computational work, and storing, using,
and analyzing large amounts of data. The features of the platform work together to
host applications efficiently and effectively, at minimal cost. App Engine’s specific role
on the platform is to host web applications and scale them automatically. App Engine
apps use the other services of the platform as needed, especially for data storage.

1

www.it-ebooks.info

http://www.it-ebooks.info/

An App Engine web application can be described as having three major parts: appli‐
cation instances, scalable data storage, and scalable services. In this chapter, we look
at each of these parts at a high level. We also discuss features of App Engine for
deploying and managing web applications, and for building websites integrated with
other parts of Google Cloud Platform.

The Runtime Environment
An App Engine application responds to web requests. A web request begins when a
client, typically a user’s web browser, contacts the application with an HTTP request,
such as to fetch a web page at a URL. When App Engine receives the request, it iden‐
tifies the application from the domain name of the address, either a custom domain
name you have registered and configured for use with the app, or an .appspot.com
subdomain provided for free with every app. App Engine selects a server from many
possible servers to handle the request, making its selection based on which server is
most likely to provide a fast response. It then calls the application with the content of
the HTTP request, receives the response data from the application, and returns the
response to the client.

From the application’s perspective, the runtime environment springs into existence
when the request handler begins, and disappears when it ends. App Engine provides
several methods for storing data that persists between requests, but these mechanisms
live outside of the runtime environment. By not retaining state in the runtime envi‐
ronment between requests—or at least, by not expecting that state will be retained
between requests—App Engine can distribute traffic among as many servers as it
needs to give every request the same treatment, regardless of how much traffic it is
handling at one time.

In the complete picture, App Engine allows runtime environments to outlive request
handlers, and will reuse environments as much as possible to avoid unnecessary initi‐
alization. Each instance of your application has local memory for caching imported
code and initialized data structures. App Engine creates and destroys instances
as needed to accommodate your app’s traffic. If you enable the multithreading feature,
a single instance can handle multiple requests concurrently, further utilizing its
resources.

Application code cannot access the server on which it is running in the traditional
sense. An application can read its own files from the filesystem, but it cannot write to
files, and it cannot read files that belong to other applications. An application can see
environment variables set by App Engine, but manipulations of these variables do not
necessarily persist between requests. An application cannot access the networking
facilities of the server hardware, although it can perform networking operations by
using services.

2 | Chapter 1: Introducing Google App Engine

www.it-ebooks.info

http://www.it-ebooks.info/

In short, each request lives in its own “sandbox.” This allows App Engine to handle a
request with the server that would, in its estimation, provide the fastest response. For
web requests to the app, there is no way to guarantee that the same app instance will
handle two requests, even if the requests come from the same client and arrive rela‐
tively quickly.

Sandboxing also allows App Engine to run multiple applications on the same server
without the behavior of one application affecting another. In addition to limiting
access to the operating system, the runtime environment also limits the amount of
clock time and memory a single request can take. App Engine keeps these limits flexi‐
ble, and applies stricter limits to applications that use up more resources to protect
shared resources from “runaway” applications.

A request handler has up to 60 seconds to return a response to the client. While that
may seem like a comfortably large amount for a web app, App Engine is optimized
for applications that respond in less than a second. Also, if an application uses many
CPU cycles, App Engine may slow it down so the app isn’t hogging the processor on
a machine serving multiple apps. A CPU-intensive request handler may take more
clock time to complete than it would if it had exclusive use of the processor, and clock
time may vary as App Engine detects patterns in CPU usage and allocates accord‐
ingly.

Google App Engine provides four possible runtime environments for applications,
one for each of four programming languages: Java, Python, PHP, and Go. The envi‐
ronment you choose depends on the language and related technologies you want to
use for developing the application.

The Python environment runs apps written in the Python 2.7 programming lan‐
guage, using a custom version of CPython, the official Python interpreter. App
Engine invokes a Python app using WSGI, a widely supported application interface
standard. An application can use most of Python’s large and excellent standard
library, as well as rich APIs and libraries for accessing services and modeling data.
Many open source Python web application frameworks work with App Engine, such
as Django, web2py, Pyramid, and Flask. App Engine even includes a lightweight
framework of its own, called webapp.

Similarly, the Java, PHP, and Go runtime environments offer standard execution envi‐
ronments for those languages, with support for standard libraries and third-party
frameworks.

All four runtime environments use the same application server model: a request is
routed to an app server, an application instance is initialized (if necessary), applica‐
tion code is invoked to handle the request and produce a response, and the response
is returned to the client. Each environment runs application code within sandbox

The Runtime Environment | 3

www.it-ebooks.info

http://www.it-ebooks.info/

restrictions, such that any attempt to use a feature of the language or a library that
would require access outside of the sandbox returns an error.

You can configure many aspects of how instances are created, destroyed, and initial‐
ized. How you configure your app depends on your need to balance monetary cost
against performance. If you prefer performance to cost, you can configure your app
to run many instances and start new ones aggressively to handle demand. If you have
a limited budget, you can adjust the limits that control how requests queue up to use
a minimum number of instances.

I haven’t said anything about which operating system or hardware configuration App
Engine uses. There are ways to figure this out with a little experimentation, but in the
end it doesn’t matter: the runtime environment is an abstraction above the operating
system that allows App Engine to manage resource allocation, computation, request
handling, scaling, and load distribution without the application’s involvement. Fea‐
tures that typically require knowledge of the operating system are either provided by
services outside of the runtime environment, provided or emulated using standard
library calls, or restricted in sensible ways within the definition of the sandbox.

Everything stated above describes how App Engine allocates application instances
dynamically to scale with your application’s traffic. In addition to a flexible bank of
instances serving your primary traffic, you can organize your app into multiple
“modules.” Each module is addressable individually using domain names, and can be
configured with its own code, performance characteristics, and scaling pattern—
including the option of running a fixed number of always-on instances, similar to tra‐
ditional servers. In practice, you usually use a bank of dynamically scaling instances
to handle your “frontend” traffic, then establish modules as “backends” to be accessed
by the frontends for various purposes.

The Static File Servers
Most websites have resources they deliver to browsers that do not change during the
regular operation of the site. The images and CSS files that describe the appearance of
the site, the JavaScript code that runs in the browser, and HTML files for pages
without dynamic components are examples of these resources, collectively known as
static files. Because the delivery of these files doesn’t involve application code, it’s
unnecessary and inefficient to serve them from the application servers.

Instead, App Engine provides a separate set of servers dedicated to delivering static
files. These servers are optimized for both internal architecture and network topology
to handle requests for static resources. To the client, static files look like any other
resource served by your app.

You upload the static files of your application right alongside the application code.
You can configure several aspects of how static files are served, including the URLs

4 | Chapter 1: Introducing Google App Engine

www.it-ebooks.info

http://www.it-ebooks.info/

for static files, content types, and instructions for browsers to keep copies of the files
in a cache for a given amount of time to reduce traffic and speed up rendering of the
page.

Frontend Caches
All App Engine traffic goes through a set of machines that know how to cache
responses to requests. If a response generated by the app declares that another request
with the same parameters should return the same response, the frontend cache stores
the response for a period of time. If another matching request comes in, the cache
returns the stored response without invoking the application. The resources con‐
served by exploiting frontend caches can be significant.

App Engine recognizes standard HTTP controls for proxy caches. Do a web search
for “HTTP cache control” for more information (Cache-Control, Expires). By
default, responses from an app have Cache-Control set to no-cache.

The static file servers can also be configured to serve specific cache controls. These
are described by a configuration file. (More on that later.)

Cloud Datastore
Most useful web applications need to store information during the handling of a
request for retrieval during a later request. A typical arrangement for a small website
involves a single database server for the entire site, and one or more web servers that
connect to the database to store or retrieve data. Using a single central database server
makes it easy to have one canonical representation of the data, so multiple users
accessing multiple web servers all see the same and most recent information. But
a central server is difficult to scale once it reaches its capacity for simultaneous con‐
nections.

By far the most popular kind of data storage system for web applications in the past
two decades has been the relational database, with tables of rows and columns
arranged for space efficiency and concision, and with indexes and raw computing
power for performing queries, especially “join” queries that can treat multiple related
records as a queryable unit. Other kinds of data storage systems include hierarchical
datastores (filesystems, XML databases) and object databases. Each kind of database
has pros and cons, and which type is best suited for an application depends on the
nature of the application’s data and how it is accessed. And each kind of database has
its own techniques for growing past the first server.

Google Cloud Platform offers several kinds of data storage you can use with an App
Engine app, including a relational database (Google Cloud SQL). Most scalable apps
use Google Cloud Datastore, or as it is known to App Engine veterans, simply “the

Frontend Caches | 5

www.it-ebooks.info

http://www.it-ebooks.info/

1 Historically, the datastore was a feature exclusive to App Engine. Today it is a full-fledged service of Google
Cloud Platform, and can be accessed from Compute Engine VMs and from apps outside of the platform using
a REST API. App Engine apps can access Cloud Datastore using the App Engine datastore APIs and libraries.

datastore.”1 The datastore most closely resembles an object database. It is not a join-
query relational database, and if you come from the world of relational database–
backed web applications (as I did), this will probably require changing the way you
think about your application’s data. As with the runtime environment, the design of
the App Engine datastore is an abstraction that allows App Engine to handle the
details of distributing and scaling the application, so your code can focus on other
things.

If it turns out the scalable datastore does not meet your needs for
complex queries, you can use Google Cloud SQL, a full-featured
relational database service based on MySQL. Cloud SQL is a feature
of Google Cloud Platform, and can be called directly from App
Engine using standard database APIs. The trade-off comes from
how you intend to scale your application. A Cloud SQL instance
behaves like a single MySQL database server, and can get bogged
down by traffic. Cloud Datastore scales automatically: with proper
data design, it can handle as many simultaneous users as App
Engine’s server instances can.

Entities and Properties
With Cloud Datastore, an application stores its data as one or more datastore entities.
An entity has one or more properties, each of which has a name, and a value that is of
one of several primitive value types. Each entity is of a named kind, which categorizes
the entity for the purpose of queries.

At first glance, this seems similar to a relational database: entities of a kind are like
rows in a table, and properties are like columns (fields). However, there are two major
differences between entities and rows. First, an entity of a given kind is not required
to have the same properties as other entities of the same kind. Second, an entity can
have a property of the same name as another entity has, but with a different type of
value. In this way, datastore entities are “schemaless.” As you’ll soon see, this design
provides both powerful flexibility as well as some maintenance challenges.

Another difference between an entity and a table row is that an entity can have multi‐
ple values for a single property. This feature is a bit quirky, but can be quite useful
once understood.

Every datastore entity has a unique key that is either provided by the application or
generated by App Engine (your choice). Unlike a relational database, the key is not a

6 | Chapter 1: Introducing Google App Engine

www.it-ebooks.info

http://www.it-ebooks.info/

“field” or property, but an independent aspect of the entity. You can fetch an entity
quickly if you know its key, and you can perform queries on key values.

An entity’s key cannot be changed after the entity has been created. The entity’s kind
is considered part of its key, so the kind cannot be changed either. App Engine uses
the entity’s key to help determine where the entity is stored in a large collection of
servers. (No part of the key guarantees that two entities are stored on the same server,
but you won’t need to worry about that anyway.)

Queries and Indexes
A datastore query returns zero or more entities of a single kind. It can also return just
the keys of entities that would be returned for a query. A query can filter based on
conditions that must be met by the values of an entity’s properties, and can return
entities ordered by property values. A query can also filter and sort using keys.

In a typical relational database, queries are planned and executed in real time against
the data tables, which are stored just as they were designed by the developer. The
developer can also tell the database to produce and maintain indexes on certain col‐
umns to speed up certain queries.

Cloud Datastore does something dramatically different. Every query has a corre‐
sponding index maintained by the datastore. When the application performs a query,
the datastore finds the index for that query, locates the first row that matches the
query, then returns the entity for each consecutive row in the index until the first row
that doesn’t match the query.

Of course, this requires that Cloud Datastore know ahead of time which queries the
application is going to perform. It doesn’t need to know the values of the filters in
advance, but it does need to know the kind of entity to query, the properties being
filtered or sorted, and the operators of the filters and the orders of the sorts.

Cloud Datastore provides a set of indexes for simple queries by default, based on
which properties exist on entities of a kind. For more complex queries, an app must
include index specifications in its configuration. The App Engine developer tools help
produce this configuration file by watching which queries are performed as you test
your application with the provided development web server on your computer. When
you upload your app, the datastore knows to make indexes for every query the app
performed during testing. You can also edit the index configuration manually.

When your application creates new entities and updates existing ones, the datastore
updates every corresponding index. This makes queries very fast (each query is a
simple table scan) at the expense of entity updates (possibly many tables may need
updating for a single change). In fact, the performance of an index-backed query is
not affected by the number of entities in the datastore, only the size of the result set.

Cloud Datastore | 7

www.it-ebooks.info

http://www.it-ebooks.info/

It’s worth paying attention to indexes, as they take up space and increase the time it
takes to update entities. We discuss indexes in detail in Chapter 7.

Transactions
When an application has many clients attempting to read or write the same data
simultaneously, it is imperative that the data always be in a consistent state. One user
should never see half-written data or data that doesn’t make sense because another
user’s action hasn’t completed.

When an application updates the properties of a single entity, Cloud Datastore
ensures that either every update to the entity succeeds all at once, or the entire update
fails and the entity remains the way it was prior to the beginning of the update. Other
users do not see any effects of the change until the change succeeds.

In other words, an update of a single entity occurs in a transaction. Each transaction
is atomic: the transaction either succeeds completely or fails completely, and cannot
succeed or fail in smaller pieces.

An application can read or update multiple entities in a single transaction, but it must
tell Cloud Datastore which entities will be updated together when it creates the enti‐
ties. The application does this by creating entities in entity groups. Cloud Datastore
uses entity groups to control how entities are distributed across servers, so it can
guarantee a transaction on a group succeeds or fails completely. In database terms,
the datastore natively supports local transactions.

When an application calls the datastore API to update an entity, the call returns only
after the transaction succeeds or fails, and it returns with knowledge of success or
failure. For updates, this means the service waits for all entities to be updated before
returning a result. The application can call the datastore asynchronously, such that
the app code can continue executing while the datastore is preparing a result. But the
update itself does not return until it has confirmed the change.

If a user tries to update an entity while another user’s update of the entity is in pro‐
gress, the datastore returns immediately with a contention failure exception. Imagine
the two users “contending” for a single piece of data: the first user to commit an
update wins. The other user must try her operation again, possibly rereading values
and calculating the update from fresh data. Contention is expected, so retries are
common. In database terms, Cloud Datastore uses optimistic concurrency control:
each user is “optimistic” that her commit will succeed, so she does so without placing
a lock on the data.

Reading the entity never fails due to contention. The application just sees the entity in
its most recent stable state. You can also read multiple entities from the same entity
group by using a transaction to ensure that all the data in the group is current and
consistent with itself.

8 | Chapter 1: Introducing Google App Engine

www.it-ebooks.info

http://www.it-ebooks.info/

In most cases, retrying a transaction on a contested entity will succeed. But if an
application is designed such that many users might update a single entity, the more
popular the application gets, the more likely users will get contention failures. It is
important to design entity groups to avoid a high rate of contention failures even with
a large number of users.

It is often important to read and write data in the same transaction. For example, the
application can start a transaction, read an entity, update a property value based on
the last read value, save the entity, and then commit the transaction. In this case, the
save action does not occur unless the entire transaction succeeds without conflict
with another transaction. If there is a conflict and the app wants to try again, the app
should retry the entire transaction: read the (possibly updated) entity again, use the
new value for the calculation, and attempt the update again. By including the read
operation in the transaction, the datastore can assume that related writes and reads
from multiple simultaneous requests do not interleave and produce inconsistent
results.

With indexes and optimistic concurrency control, Cloud Datastore is designed for
applications that need to read data quickly, ensure that the data it sees is in a consis‐
tent form, and scale the number of users and the size of the data automatically. While
these goals are somewhat different from those of a relational database, they are espe‐
cially well suited to web applications.

The Services
The datastore’s relationship with the runtime environment is that of a service: the
application uses an API to access a separate system that manages all its own scaling
needs separately from application instances. Google Cloud Platform and App Engine
include several other self-scaling services useful for web applications.

The memory cache (or memcache) service is a short-term key-value storage service.
Its main advantage over the datastore is that it is fast—much faster than the datastore
for simple storage and retrieval. The memcache stores values in memory instead of
on disk for faster access. It is distributed like the datastore, so every request sees the
same set of keys and values. However, it is not persistent like the datastore: if a server
goes down, such as during a power failure, memory is erased. It also has a more limi‐
ted sense of atomicity and transactionality than the datastore. As the name implies,
the memcache service is best used as a cache for the results of frequently performed
queries or calculations. The application checks for a cached value, and if the value
isn’t there, it performs the query or calculation and stores the value in the cache for
future use.

The Services | 9

www.it-ebooks.info

http://www.it-ebooks.info/

2 An earlier version of this service was known as App Engine’s “Blobstore” service. Both Blobstore and Cloud
Storage are still available, with similar features. For new projects, prefer Cloud Storage. See the book’s website
for a free bonus chapter about the Blobstore service.

3 The Search service is currently exclusive to App Engine.

Google Cloud Platform provides another storage service specifically for very large
values, called Google Cloud Storage.2 Your app can use Cloud Storage to store, man‐
age, and serve large files, such as images, videos, or file downloads. Cloud Storage can
also accept large files uploaded by users and offline processes. This service is distinct
from Cloud Datastore to work around infrastructure limits on request and response
sizes between users, application servers, and services. Application code can read val‐
ues from Cloud Storage in chunks that fit within these limits. Code can also query for
metadata about Cloud Storage values.

For when you really need a relational database, Google Cloud SQL provides full-
featured MySQL database hosting. Unlike Cloud Datastore or Cloud Storage, Cloud
SQL does not scale automatically. Instead, you create SQL instances, virtual machines
running managed MySQL software. Instances are large, and you only pay for the
storage you use and the amount of time an instance is running. You can even config‐
ure instances to turn themselves off when idle, and reactivate when a client attempts
to connect. Cloud SQL can be the basis for an always-on web app, or a part of a larger
data processing solution.

Yet another storage service is dedicated to providing full-text search infrastructure,
known simply as the Search service.3 As Cloud Datastore stores entities with proper‐
ties, the Search service stores documents with fields. Your app adds documents to
indexes. Unlike the datastore, you can use the Search service to perform faceted text
searches over the fields of the documents in an index, including partial string
matches, range queries, and Boolean search expressions. The service also supports
stemming and tokenization.

App Engine applications can access other web resources using the URL Fetch service.
The service makes HTTP requests to other servers on the Internet, such as to retrieve
pages or interact with web services. Because remote servers can be slow to respond,
the URL Fetch API supports fetching URLs in the background while a request han‐
dler does other things, but in all cases the fetch must start and finish within the
request handler’s lifetime. The application can also set a deadline, after which the call
is canceled if the remote host hasn’t responded.

App Engine applications can send email messages using the Mail service. The app
can send email on behalf of the application itself or on behalf of the user who made
the request that is sending the email (if the message is from the user). Many web
applications use email to notify users, confirm user actions, and validate contact
information.

10 | Chapter 1: Introducing Google App Engine

www.it-ebooks.info

http://www.dansanderson.com/appengine
http://www.it-ebooks.info/

An application can also receive email messages. If an app is configured to receive
email, a message sent to the app’s address is routed to the Mail service, which delivers
the message to the app in the form of an HTTP request to a request handler.

App Engine applications can send and receive instant messages to and from chat
services that support the XMPP protocol. An app sends an XMPP chat message by
calling the XMPP service. As with incoming email, when someone sends a message to
the app’s address, the XMPP service delivers it to the app by calling a request handler.

You can accomplish real-time two-way communication directly with a web browser
using the Channel service, a clever implementation of the Comet model of browser
app communication. Channels allow browsers to keep a network connection open
with a remote host to receive real-time messages long after a web page has finished
loading. App Engine fits this into its request-based processing model by using a ser‐
vice: browsers do not connect directly to application servers, but instead connect to
“channels” via a service. When an application decides to send a message to a client (or
set of clients) during its normal processing, it calls the Channel service with the mes‐
sage. The service handles broadcasting the message to clients, and manages open
connections. Paired with web requests for messages from clients to apps, the Channel
service provides real-time browser messaging without expensive polling. App Engine
includes a JavaScript client so your code in the browser can connect to channels.

Google Accounts, OpenID, and OAuth
App Engine integrates with Google Accounts, the user account system used by Goo‐
gle applications such as Google Mail, Google Docs, and Google Calendar. You can use
Google Accounts as your app’s user authentication system, so you don’t have to build
your own. And if your users already have Google accounts, they can sign in to your
app using their existing accounts, with no need to create new accounts just for your
app.

Google Accounts is especially useful for developing applications for your company or
organization using Google Apps for Work (or Google Apps for Education). With
Google Apps, your organization’s members can use the same account to access your
custom applications as well as their email, calendar, and documents. You can add
your App Engine application to a subdomain of your Apps domain from your Google
Apps dashboard, just like any other Google Apps feature.

Of course, there is no obligation to use Google Accounts. You can always build your
own account system, or use an OpenID provider. App Engine includes special sup‐
port for using OpenID providers in some of the same ways you can use Google
Accounts. This is useful when building applications for the Google Apps Marketplace,
which uses OpenID to integrate with enterprise single sign-on services.

Google Accounts, OpenID, and OAuth | 11

www.it-ebooks.info

http://www.it-ebooks.info/

App Engine includes built-in support for OAuth, a protocol that makes it possible for
users to grant permission to third-party applications to access personal data in
another service, without having to share their account credentials with the third
party. For instance, a user might grant a mobile phone application access to her Goo‐
gle Calendar account, to read appointment data and create new appointments on her
behalf. App Engine’s OAuth support makes it straightforward to implement an OAuth
service for other apps to use. Note that the built-in OAuth feature only works when
using Google Accounts, not OpenID or a proprietary identity mechanism.

There is no special support for implementing an OAuth client in an App Engine app,
but most OAuth client libraries work fine with App Engine. For Google services and
APIs, the easiest way is to use the Google APIs Client Libraries, which are known to
run from App Engine and are available for many languages.

Google Cloud Endpoints
APIs are an essential part of the modern Web. It is increasingly common for browser-
based web applications to be implemented as rich JavaScript clients: the user’s first
visit downloads the client code to the browser, and all subsequent interactions with
the server are performed by structured web requests issued by the JavaScript code (as
XMLHttpRequests, or XHRs). Nonbrowser clients for web apps, especially native
mobile apps running on smartphones and tablets, are also increasingly important.
Both kinds of clients tend to use REST (Representational State Transfer) APIs pro‐
vided by the web app, and tend to need advanced features such as OAuth for authen‐
ticating calls.

To address this important need, Google Cloud Platform provides a service and a suite
of tools called Google Cloud Endpoints. Endpoints make it especially easy for a
mobile or rich web client to call methods on the server. Endpoints includes libraries
and tools for generating server functionality from a set of methods in Python and
Java, and generating client code for Android, iOS, and browser-based JavaScript. The
tools can also generate a “discovery document” that works with the Google APIs Cli‐
ent Libraries for many client languages. And OAuth support is built in, so you don’t
have to worry about authentication and can just focus on the application logic.

Task Queues and Cron Jobs
A web application must respond to web requests very quickly, usually in less than a
second and preferably in just a few dozen milliseconds, to provide a smooth experi‐
ence to the user sitting in front of the browser. This doesn’t give the application much
time to do work. Sometimes there is more work to do than there is time to do it. In
such cases, it’s usually OK if the work gets done within a few seconds, minutes, or

12 | Chapter 1: Introducing Google App Engine

www.it-ebooks.info

http://www.it-ebooks.info/

hours, instead of right away, as the user is waiting for a response from the server. But
the user needs a guarantee that the work will get done.

For this kind of work, an App Engine app uses task queues. Task queues let you
describe work to be done at a later time, outside the scope of the web request. Queues
ensure that every task gets done eventually. If a task fails, the queue retries the task
until it succeeds.

There are two kinds of task queues: push queues and pull queues. With push queues,
each task record represents an HTTP request to a request handler. App Engine issues
these requests itself as it processes a push queue. You can configure the rate at which
push queues are processed to spread the workload throughout the day. With pull
queues, you provide the mechanism, such as a custom computational engine, that
takes task records off the queue and does the work. App Engine manages the queuing
aspect of pull queues.

A push queue performs a task by calling a request handler. It can include a data pay‐
load provided by the code that created the task, delivered to the task’s handler as an
HTTP request. The task’s handler is subject to the same limits as other request han‐
dlers, with one important exception: a single task handler can take as long as 10
minutes to perform a task, instead of the 60-second limit applied to user requests. It’s
still useful to divide work into small tasks to take advantage of parallelization and
queue throughput, but the higher time limit makes tasks easier to write in straightfor‐
ward cases.

An especially powerful feature of task queues is the ability to enqueue a task within a
Cloud Datastore transaction, when called via App Engine. This ensures that the task
will be enqueued only if the rest of the datastore transaction succeeds. You can use
transactional tasks to perform additional datastore operations that must be consistent
with the transaction eventually, but that do not need the strong consistency guaran‐
tees of the datastore’s local transactions. For example, when a user asks to delete
a bunch of records, you can store a receipt of this request in the datastore and
enqueue the corresponding task in a single transaction. If the transaction fails, you
can report this to the user, and rest assured that neither the receipt nor the task are in
the system.

App Engine has another service for executing tasks at specific times of the day: the
scheduled tasks service. Scheduled tasks are also known as “cron jobs,” a name bor‐
rowed from a similar feature of the Unix operating system. The scheduled tasks ser‐
vice can invoke a request handler at a specified time of the day, week, or month, based
on a schedule you provide when you upload your application. Scheduled tasks are
useful for doing regular maintenance or sending periodic notification messages.

We’ll look at task queues, scheduled tasks, and some powerful uses for them in Chap‐
ter 16.

Task Queues and Cron Jobs | 13

www.it-ebooks.info

http://www.it-ebooks.info/

Namespaces
Cloud Datastore, Cloud Storage, memcache, Search, and task queues all store data for
an app. It’s often useful to partition an app’s data across all services. For example, an
app may be serving multiple companies, where each company sees its own isolated
instance of the application, and no company should see any data that belongs to any
other company. You could implement this partitioning in the application code, using
a company ID as the prefix to every key. But this is prone to error: a bug in the code
may expose or modify data from another partition.

To better serve this case, these storage services provide this partitioning feature at the
infrastructure level. An app can declare it is acting in a namespace by calling an API.
All subsequent uses of any of the data services will restrict itself to the namespace
automatically. The app does not need to keep track of which namespace it is in after
the initial declaration.

The default namespace has a name equal to the empty string. This namespace is dis‐
tinct from other namespaces. (There is no “global” namespace.) In the services that
support it, all data belongs to a namespace.

Developer Tools
Google provides a rich set of tools and libraries for developing for Cloud Platform
and App Engine. The main tool suite is the Cloud SDK, which, among other things,
includes a package installer and updater for the other tools. You will use this installer
to acquire the App Engine SDK for Python, and other components you might need. If
you’re using Windows or Mac OS X, you can also get a windowed “launcher” applica‐
tion that offers many common tasks for App Engine developers in an easy-to-use vis‐
ual app. All of the tools are scriptable, so you can integrate them into deployment
scripts and other parts of your development environment.

One of the most useful parts of the SDK is the development web server. This tool
runs your application on your local computer and simulates the runtime environ‐
ment and services. The development server automatically detects changes in your
source files and reloads them as needed, so you can keep the server running while
you develop the application.

The development server’s simulated datastore can automatically generate configura‐
tion for query indexes as the application performs queries, which App Engine will use
to prebuild indexes for those queries. You can turn this feature off to test that queries
have appropriate indexes in the configuration.

The development web server includes a built-in browser-based developer console for
inspecting and prodding your app. You use this console to inspect and modify the

14 | Chapter 1: Introducing Google App Engine

www.it-ebooks.info

http://www.it-ebooks.info/

contents of the simulated data storage services, manage task queue interactions, and
simulate nonweb events such as incoming email messages.

You also use the toolkit to interact with App Engine directly, especially to deploy your
application and run it on Cloud Platform. You can download log data from your live
application, and manage the live application’s datastore indexes and service configu‐
ration.

With a provided library, you can add a feature to your application that lets you access
the running app’s environment programmatically. This is useful for building adminis‐
trative tools, uploading and downloading data, and even running a Python interactive
prompt that can operate on live data.

But wait, there’s more! The SDK also includes libraries for automated testing, and for
gathering reports on application performance. We’ll cover one such tool, AppStats, in
Chapter 17.

The Cloud Console
When your application is ready for its public debut, you create a project, then deploy
your app’s code to the project using a tool in the Cloud SDK. The project contains
everything related to your app, including your App Engine code, data in all of Cloud
Platform’s data services, any Compute Engine VMs you might create with the app,
and project-related settings and permissions. All of this is managed in a browser-
based interface known as the Google Developers Console, or just “Cloud Console.”

You sign in to the Cloud Console using your Google account. You can use your cur‐
rent Google account if you have one. You may also want to create a Google account
just for your application, which you might use as the “from” address on email mes‐
sages. Once you have created a project in Cloud Console, you can add additional
Google accounts to the project. Each account has one of three possible roles: owners
can change settings and manage permissions for other accounts, editors can change
settings (but not permissions), and viewers can read (but not change) settings and
project information.

The Console gives you access to real-time performance data about how your applica‐
tion is being used, as well as access to log data emitted by your application. You can
query Cloud Datastore and other data services for the live application by using a web
interface, and check on the status of datastore indexes and other features.

When you upload new code for your application, the uploaded version is assigned a
version identifier, which you specify in the application’s configuration file. The ver‐
sion used for the live application is whichever major version is selected as the
“default.” You control which version is the “default” by using the Cloud Console. You
can access nondefault versions by using a special URL containing the version identi‐

The Cloud Console | 15

www.it-ebooks.info

http://www.it-ebooks.info/

fier. This allows you to test a new version of an app running on App Engine before
making it official.

You use the Console to set up and manage the billing account for your application.
When you’re ready for your application to consume more resources beyond the free
amounts, you set up a billing account using a credit card and Google Accounts. The
owner of the billing account sets a budget, a maximum amount of money that can be
charged per calendar day. Your application can consume resources until your budget
is exhausted, and you are only charged for what the application actually uses beyond
the free amounts.

Getting Started
You can start developing applications for Google App Engine without creating an
account. All you need to get started is the Cloud SDK, which is a free download from
the Cloud Platform website:

https://cloud.google.com/sdk/

For a brief guided tour of creating an App Engine app with some sample code, see
this quick-start guide (sign-in required):

https://console.developers.google.com/start/appengine

And while you’re at it, be sure to bookmark the official App Engine documentation,
which includes tutorials, articles, and reference guides for all of App Engine’s features:

https://cloud.google.com/appengine/

In the next chapter, we’ll describe how to create a new project from start to finish,
including how to create an account, upload the application, and run it on App
Engine.

16 | Chapter 1: Introducing Google App Engine

www.it-ebooks.info

https://cloud.google.com/sdk/
https://console.developers.google.com/start/appengine
https://cloud.google.com/appengine/
http://www.it-ebooks.info/

CHAPTER 2

Creating an Application

The App Engine development model is as simple as it gets:

1. Create the application.
2. Test the application on your own computer by using the web server software

included with the App Engine development kit.
3. Deploy the finished application to App Engine.

In this chapter, we’ll walk through the process of creating a new application, testing it
with the development server, registering a new project ID with Google Cloud Plat‐
form, setting up a domain name, and uploading the app to App Engine. We’ll look at
some of the features of the Python software development kit (SDK) and the Cloud
Console. We’ll also discuss the workflow for developing and deploying an app.

We will take this opportunity to demonstrate a common pattern in web applications:
managing user preferences data. This pattern uses several App Engine services and
features.

Setting Up the Cloud SDK
To develop an App Engine app in Python, you need several unsurprising things on
your local computer:

• Python, version 2.7.x
• Your favorite programming text editor or IDE for Python
• The Google Cloud SDK

17

www.it-ebooks.info

http://www.it-ebooks.info/

The Google Cloud SDK is a collection of tools and libraries for developing, testing,
and deploying software for the Cloud Platform, including App Engine. The center‐
piece of the suite is the gcloud command, a multifunction tool which you use to
install and update components, perform deployment and maintenance tasks, and
otherwise interact with Cloud Platform as an administrator. The App Engine compo‐
nent provides tools for running your app locally on your computer for testing, and
for deploying the app. The Cloud SDK works on any platform that can run Python,
including Windows, Mac OS X, and Linux.

The development server and app maintenance features are all available through
command-line tools. You can use these tools from a command prompt or otherwise
integrate them into your development environment as you see fit. For example, it’s
common to automate the deployment process with scripts that run the deployment
tool and manage application versions and testing.

On Windows and Mac OS X, you can install a “launcher” application that makes it
especially easy to create, edit, test, and upload an app, using a simple graphical inter‐
face. Paired with a good programming text editor (such as Notepad++ for Windows,
or Sublime Text for Mac OS X), the launcher provides a fast and intuitive Python
development experience.

Some professional Python IDEs, such as JetBrains PyCharm, have built-in support
for creating App Engine applications, and provide another alternative to the com‐
mand line for invoking the App Engine SDK tools.

In the next few sections, we’ll install the Cloud SDK and components related to
Python app development.

Installing Python
The App Engine SDK for the Python runtime environment is compatible with any
computer that runs Python 2.7. If you are using Mac OS X or Linux, or if you have
used Python previously, you may already have Python on your system. You can test
whether Python is installed on your system and check which version is installed by
running the following command at a command prompt (in Windows, Command
Prompt; in Mac OS X, Terminal):

python -V

(That’s a capital “V.”) If Python is installed, it prints its version number, like so:

Python 2.7.5

You can download and install Python 2.7 for your platform from the Python website.

18 | Chapter 2: Creating an Application

www.it-ebooks.info

https://www.python.org/
http://www.it-ebooks.info/

1 If you’re developing an old App Engine Python application using Python 2.5, you can continue to do so. How‐
ever, you will need Python 2.7 to run the Cloud SDK tools. Your Python 2.5 code will work with the Python
2.7 interpreter locally. Upgrading to the Python 2.7 runtime environment is strongly recommended.

Be sure to get Python version 2.7 (such as 2.7.8) from the Downloads section of the
site. As of this writing, the latest major version of Python is 3.4, and the latest 2.x-
compatible release is 2.7.1

App Engine Python does not yet have a dedicated Python 3 run‐
time environment. Python 3 includes several new language and
library features that are not backward compatible with earlier ver‐
sions. As we’ll see in a minute, you specify the runtime environ‐
ment for your application using configuration, so your app always
runs with the same major version of Python, even as new major
versions become available.

Installing the Cloud SDK
There are several easy ways to install the Cloud SDK, depending on your operating
system and personal preferences.

For Windows, visit the Cloud SDK website, select the Windows installation instruc‐
tions, then click the “Download” button:

https://cloud.google.com/sdk/

Run GoogleCloudSDKInstaller.exe and follow the instructions. By default, the installer
puts the SDK in C:\Program Files\Google\Cloud SDK, and offers to create appropriate
shortcuts on the desktop. One of these shortcuts, the Google Cloud SDK Shell, opens
a command prompt with its command lookup path amended to include the Cloud
SDK commands.

For Mac OS X or Linux, open a command prompt and run the following command:

curl https://sdk.cloud.google.com | bash

This downloads the Cloud SDK archive, unpacks it, and runs an interactive installa‐
tion routine. If you’d rather invoke these steps manually, you can download the
archive from the Cloud SDK website. The installation routine is this shell
script: ./google-cloud-sdk/install.sh.

Either way you do it, the result is a google-cloud-sdk directory, which you can put in a
convenient place. The installation script attempts to add the Cloud SDK commands
to your command prompt’s search path by amending your environment. If you’re
using a shell other than bash, you may need to finish this step manually. You can

Setting Up the Cloud SDK | 19

www.it-ebooks.info

https://cloud.google.com/sdk/
http://www.it-ebooks.info/

always invoke the Cloud SDK commands using their full path in the google-cloud-sdk
directory.

Close and reopen your command prompt to pick up the changes to the command
search path.

On all platforms, confirm that the SDK was installed successfully by running the
gcloud command like so:

gcloud -h

The command will print some help text describing its various features. If instead the
command prompt reports that the command is not found, double-check that the
SDK is on the command path. In Windows, this is set up by the “SDK Shell,” or
the cloud_env.bat script in the main SDK folder. In Mac OS X and Linux, make sure
you have restarted your command prompt to pick up the environment changes to
your shell startup scripts, and that the google-cloud-sdk/bin directory is on your
search path.

The Cloud SDK politely keeps all of its stuff in the google-cloud-sdk directory. To
uninstall it, simply delete the directory, and undo the command search path modifi‐
cations.

Authenticating with the Cloud SDK
Before doing anything else, run this command:

gcloud auth login

This opens a browser window for the Google authentication sequence. Sign in using
your Google account (or register for a free account if you don’t have one yet), then
authorize the Google Cloud SDK to access Cloud services on your behalf.

The gcloud command remembers the authentication credentials it receives and uses
them with subsequent commands that you run from your computer. To revoke these
credentials (to “sign out” of gcloud), run this command:

gcloud auth revoke

You can use gcloud auth login to sign in with multiple accounts. Credentials for all
accounts are remembered until revoked, and you can switch between them without
signing in again. To add an account, simply gcloud auth login again with the new
account. To list all accounts with stored credentials and see which account is cur‐
rently active:

gcloud auth list

To switch the active account to another one with stored credentials:

gcloud config set account your.email@gmail.com

20 | Chapter 2: Creating an Application

www.it-ebooks.info

http://www.it-ebooks.info/

Installing the App Engine SDK
The Cloud SDK installation process already asked you if you wanted to install an App
Engine SDK. If you answered in the affirmative and requested the App Engine SDK
for “Python and PHP,” then you’re all set. (The Python SDK and the PHP SDK are the
same component.)

If you have not yet installed the App Engine SDK for Python, you can do so with this
command:

gcloud components update gae-python

You can test that the App Engine SDK is installed by running the following com‐
mand:

dev_appserver.py --help

You will use the dev_appserver.py command to start a local development server
running a test version of your app. With the --help argument, the command simply
prints help text and exits.

Windows users, if when you run this command, a dialog box opens with the message
“Windows cannot open this file… To open this file, Windows needs to know what
program created it,” you must tell Windows to use Python to open the file. In the dia‐
log box, choose “Select the program from a list,” and click OK. Click Browse, then
locate your Python installation (such as C:\Python27). Select python from this folder,
then click Open. Select “Always use the selected program to open this kind of file.”
Click OK. A window will open and attempt to run the command, then immediately
close. You can now run the command from the Command Prompt.

You use the gcloud components command to install, update, and manage the various
components of the Cloud SDK. To see a list of all available components and which
ones are installed, run this command:

gcloud components list

To update all components that need updating:

gcloud components update

Developing the Application
It’s time to write our first App Engine application!

So what is an App Engine app? An App Engine app is software that responds to web
requests. It does so by calling request handlers, routines that accept request parame‐
ters and return responses. App Engine determines which request handler to use for a
given request from the request’s URL, using a configuration file included with the app
that maps URLs to handlers.

Developing the Application | 21

www.it-ebooks.info

http://www.it-ebooks.info/

An app can also include static files, such as images, CSS stylesheets, and browser Java‐
Script. App Engine serves these files directly to clients in response to requests for cor‐
responding URLs without invoking any code. The app’s configuration specifies which
of its files are static, and which URLs to use for those files.

The application configuration includes metadata about the app, such as its project ID
and version number. When you deploy the app to App Engine, all of the app’s files,
including the code, configuration files, and static files, are uploaded and associated
with the project ID and version number mentioned in the configuration. An app can
also have configuration files specific to the services, such as for datastore indexes, task
queues, and scheduled tasks. These files are associated with the app in general, not a
specific version of the app.

In the next few sections, we create the files needed for a simple application, and look
at how to use the tools and libraries included with the SDK.

The User Preferences Pattern
The application we create in this section is a simple clock. When a user visits the site,
the app displays the current time of day according to the server’s system clock. By
default, the app shows the current time in the Coordinated Universal Time (UTC)
time zone. The user can customize the time zone by signing in using Google
Accounts and setting a preference.

This app demonstrates three App Engine features:

• The datastore, primary storage for data that is persistent, reliable, and scalable
• The memory cache (or memcache), secondary storage that is faster than the data‐

store, but is not necessarily persistent in the long term
• Google Accounts, the ability to use Google’s user account system for authenticat‐

ing and identifying users

Google Accounts works similarly to most user account systems. If the user is not
signed in to the clock application, she sees a generic view with default settings (the
UTC time zone) and a link to sign in or create a new account. If the user chooses to
sign in or register, the application directs her to a sign-in form managed by Google
Accounts. Signing in or creating an account redirects the user back to the application.

Of course, you can implement your own account mechanism instead of using Google
Accounts. Using Google Accounts has advantages and disadvantages—the chief
advantage being that you don’t have to implement your own account mechanism. If a
user of your app already has a Google account, the user can sign in with that account
without creating a new account for your app.

22 | Chapter 2: Creating an Application

www.it-ebooks.info

http://www.it-ebooks.info/

If the user accesses the application while signed in, the app loads the user’s preferen‐
ces data and uses it to render the page. The app retrieves the preferences data in two
steps. First, it attempts to get the data from the fast secondary storage, the memory
cache. If the data is not present in the memory cache, the app attempts to retrieve it
from the primary storage (the datastore), and if successful, it puts it into the memory
cache to be found by future requests.

This means that for most requests, the application can get the user’s preferences from
memcache without accessing the datastore. While reading from the datastore is rea‐
sonably fast, reading from the memcache is much faster and avoids the cost of a data‐
store call. The difference is substantial when the same data must be accessed every
time the user visits a page.

Our clock application has two request handlers. One handler displays the current
time of day, along with links for signing in and out. It also displays a web form for
adjusting the time zone when the user is signed in. The second request handler pro‐
cesses the time zone form when it is submitted. When the user submits the preferen‐
ces form, the app saves the changes and redirects the browser back to the main page.

The application gets the current time from the application server’s system clock. It’s
worth noting that App Engine makes no guarantees that the system clocks of all its
web servers are synchronized. Because two requests for this app may be handled by
different servers, different requests may see different clocks. The server clock is not
consistent enough as a source of time data for a real-world application, but it’s good
enough for this example.

A Simple App
The simplest Python application for App Engine is a single directory with two files: a
configuration file named app.yaml, and a file of Python code for a request handler.
The directory containing the app.yaml file is the application root directory. You’ll
refer to this directory often when using the tools.

Create a directory named clock to contain the project. Using your favorite text editor,
create a file inside this directory named app.yaml similar to Example 2-1.

Example 2-1. The app.yaml configuration file for a simple application, using the Python
2.7 runtime environment

application: clock
version: 1
runtime: python27
api_version: 1
threadsafe: yes

handlers:
- url: .*

Developing the Application | 23

www.it-ebooks.info

http://www.it-ebooks.info/

 script: main.application

libraries:
- name: webapp2
 version: "2.5.2"

This configuration file is in a format called YAML, an open format for configuration
files and network messages. You don’t need to know much about the format beyond
what you see here.

In this example, the configuration file tells App Engine that this is version 1 of an
application called clock, which uses version 1 (api_version) of the Python 2.7 run‐
time environment. Every request for this application (every URL that matches the
regular expression .*, which is all of them) is to be handled by an application object
defined in the application variable of a Python module named main.

Next, create a file named main.py similar to Example 2-2, in the same directory as
app.yaml.

Example 2-2. A simple Python web application, using the webapp2 framework

import datetime
import webapp2

class MainPage(webapp2.RequestHandler):
 def get(self):
 message = '<p>The time is: %s</p>' % datetime.datetime.now()
 self.response.out.write(message)

application = webapp2.WSGIApplication([('/', MainPage)],
 debug=True)

This simple Python web application uses a web application framework called
“webapp2,” which is included with App Engine. This framework conforms to a com‐
mon standard for Python web application frameworks known as the Web Server
Gateway Interface (WSGI). You don’t need to know much about WSGI, except that
it’s a Python standard, there are many useful frameworks to choose from, and it’s easy
to port a WSGI application to other application hosting environments using various
adapters (such as a WSGI-to-CGI adapter). webapp2 is a simple example of a WSGI
framework. Django, a popular open source web app framework for Python that’s also
included with App Engine, is another.

We’ll walk through this example in a moment, but first, let’s get it running. From a
command prompt, run the dev_appserver.py command, specifying the path to the
project directory (clock) as an argument:

dev_appserver.py clock

24 | Chapter 2: Creating an Application

www.it-ebooks.info

http://www.it-ebooks.info/

If your current working directory is the clock directory you just
created, you can run the command using a dot (.) as the path to
the project:

dev_appserver.py .

Test your application by visiting the server’s URL in a web browser:

http://localhost:8080/

The browser displays a page similar to Figure 2-1.

Figure 2-1. The first version of the clock application viewed in a browser

You can leave the web server running while you develop your application. The web
server notices when you make changes to your files, and reloads them automatically
as needed.

Developing the Application | 25

www.it-ebooks.info

http://localhost:8080/
http://www.it-ebooks.info/

The server starts up and prints several messages to the console. You can safely ignore
warnings that say things like “Could not initialize images API.” These are expected if
you have followed the installation steps so far. The last message should look some‐
thing like this:

INFO ... Starting module "default" running at: http://localhost:8080
INFO ... Starting admin server at: http://localhost:8000

This message indicates the server started successfully. If you do not see this message,
check the other messages for hints, and double-check that the syntax of your
app.yaml file is correct.

Introducing the webapp Framework
App Engine’s Python 2.7 runtime environment uses WSGI as the interface between
your application and the server instance running the application. Typically, you
would not write the code that implements this interface. Instead, you would use a
framework, a suite of libraries and tools that form an easy way to think about building
web applications and perform common web tasks.

There are dozens of web frameworks written in Python, and several are mature, well
documented, and have active developer communities. Django, Flask, web2py, and
Pyramid are examples of well-established Python web frameworks that work well
with App Engine. We’ll discuss how to use Django with App Engine in Chapter 18.

The webapp2 framework is intended to be small and easy to use. It doesn’t have the
features of more established frameworks, but it’s good enough for small projects. For
simplicity, most of the Python examples in this book use the webapp2 framework.
We’ll introduce some of its features here.

Let’s take a closer look at our simple web application, line by line:

import datetime
import webapp2

This loads the libraries we intend to use in the main module. We use datetime to get
the system time for our clock. The webapp2 framework is in the webapp2 module:

class MainPage(webapp2.RequestHandler):
 def get(self):
 message = '<p>The time is: %s</p>' % datetime.datetime.now()
 self.response.out.write(message)

webapp2 applications consist of one or more request handlers, units of code mapped
to URLs or URL patterns that are executed when a client (or other process) requests a
URL. As we saw earlier, the first URL mapping takes place in app.yaml, which asso‐
ciates the request URL with its WSGI application object in a Python module. The
webapp2 application maps this to a RequestHandler class.

26 | Chapter 2: Creating an Application

www.it-ebooks.info

http://www.it-ebooks.info/

To produce the response, webapp2 instantiates the class and then calls a method of
the class that corresponds to the HTTP method of the request. When you type a URL
into your browser’s address bar, the browser uses the HTTP GET method with the
request, so webapp2 calls the get() method of the request handler. Similarly, when
you submit a web form, the browser uses the HTTP POST method, which would
attempt to call a post() method.

The code can access the request data and produce the response data, using attributes
of the instance. In this case, we prepared a response string (message), then used the
output stream of the response attribute to write the message. You can also use the
response attribute to set response headers, such as to change the content type. (Here,
we leave the content type at its default of text/html.)

application = webapp2.WSGIApplication([('/', MainPage)],
 debug=True)

The application module global variable contains the object that represents the
WSGI application. This value is created when the main module is imported for the
first time, and stays in memory for the lifetime of the application instance. (App
Engine creates and destroys application instances as needed to serve your app’s traffic.
More on that later.) App Engine knows which module and variable to use based on
the mapping in the app.yaml file.

The application object is an instance of the WSGIApplication class provided by the
webapp2 module. The constructor is called with two values. The first is a list of URL
pattern and RequestHandler class pairs. When the application is called to handle a
request, the URL is tested against each pattern in the order it appears in the list. The
first to match wins. The URL pattern is a regular expression.

In this case, our application simply maps the root URL path (/) to MainPage. If the
application is asked to handle any other URL path (any path that doesn’t match),
webapp2 serves an HTTP 404 error page. Notice that the app.yaml file maps all URL
paths to this application, effectively putting webapp2 in charge of serving 404 errors.
(If a URL does not match any pattern in app.yaml, App Engine serves its own 404
error.)

The WSGIApplication constructor is also given a debug=True parameter. This tells
webapp2 to print detailed error messages to the browser when things go wrong.
webapp2 knows to only use this in the development server, and to disable this feature
when it is running on App Engine, so you can just leave it turned on.

A single WSGIApplication instance can handle multiple URLs, routing the request to
different RequestHandler classes based on the URL pattern. But we’ve already seen
that the app.yaml file maps URL patterns to handler scripts. So which URL patterns
should appear in app.yaml, and which should appear in the WSGIApplication? Many
web frameworks include their own URL dispatcher logic, and it’s common to route all

Developing the Application | 27

www.it-ebooks.info

http://www.it-ebooks.info/

dynamic URLs to the framework’s dispatcher in app.yaml. With webapp2, the answer
mostly depends on how you’d like to organize your code. For the clock application,
we will create a second request handler as a separate script to take advantage of a fea‐
ture of app.yaml for user authentication, but we could also put this logic in main.py
and route the URL with the WSGIApplication object.

Templates, Users, and Google Accounts
So far, our clock shows the same display for every user. To allow users to customize
the display and save their preferences for future sessions, we need a way to identify
the user making a request. An easy way to do this is with Google Accounts, aka the
Users service.

Before we make the user interface of our app more elaborate, let’s introduce a tem‐
plating system to manage our HTML. Mixing markup and code for the browser in
your server-side code gets messy fast. It’s nearly always better to use a library that can
represent the user interface code separately from your app code, using templates. The
app code calls the templating system to fill in the blanks with dynamic data and ren‐
der the result.

For this example, we’ll use the Jinja2 templating system. Jinja2 is an open source tem‐
plating system written in Python, based on the templating system included with the
Django web application framework. App Engine will provide this library to your app
if you request it in the app.yaml file.

Edit app.yaml, and add these lines to the libraries: section near the bottom:

libraries:
...
- name: jinja2
 version: "2.6"
- name: markupsafe
 version: "0.15"

The libraries: section of app.yaml tells App Engine to add certain Python libraries
to the runtime environment when it runs the app. We used this feature to request ver‐
sion 2.5.2 of webapp2. These new lines add Jinja2 (and its related library markupsafe)
to the environment. App Engine supports a short but useful list of third-party libra‐
ries in this way, so you do not have to add the library to your application code.

To run your app locally, you must have these libraries installed. For historical reasons,
webapp2 is provided for us by the App Engine SDK, but Jinja2 is not, so we must
install it in the local development environment. App Engine does not include every
library in the SDK because it would have to include every supported version of every
library, and that could get large.

28 | Chapter 2: Creating an Application

www.it-ebooks.info

http://www.it-ebooks.info/

There are several ways to install Python packages. Your Python installation may
already have the easy_install command, and if it doesn’t, you can get it by down‐
loading and installing setuptools. A newer more featureful alternative is pip. Both
easy_install and pip get packages from the Python Package Index (PyPi) and
install them in your Python installation’s site-packages collection.

To install Jinja2 (and its helper package markupsafe) using pip:

pip install jinja2 markupsafe

In Mac OS X or Linux, if you’re installing these packages in the system’s main Python
installation, you must run this command via sudo and enter an administrative pass‐
word when prompted:

sudo pip install jinja2 markupsafe

Windows users, there is a pip.exe command you can add to your command path (in
C:\Python27\Scripts), but you can also just invoke it with the python command:

python -m pip install jinja2 markupsafe

Let’s add something to our app’s home page that indicates whether the user is signed
in, and provides links for signing in and signing out of the application. Edit main.py
to resemble Example 2-3.

Example 2-3. A version of main.py that invites the user to sign in with Google Accounts,
using a Jinja2 template

import datetime
import jinja2
import os
import webapp2

from google.appengine.api import users

template_env = jinja2.Environment(
 loader=jinja2.FileSystemLoader(os.getcwd()))

class MainPage(webapp2.RequestHandler):
 def get(self):
 current_time = datetime.datetime.now()
 user = users.get_current_user()
 login_url = users.create_login_url(self.request.path)
 logout_url = users.create_logout_url(self.request.path)

 template = template_env.get_template('home.html')
 context = {
 'current_time': current_time,
 'user': user,
 'login_url': login_url,
 'logout_url': logout_url,

Developing the Application | 29

www.it-ebooks.info

https://pypi.python.org/pypi/setuptools
https://pip.pypa.io/
http://www.it-ebooks.info/

 }
 self.response.out.write(template.render(context))

application = webapp2.WSGIApplication([('/', MainPage)],
 debug=True)

Next, create a new file in the same directory named home.html, and edit it to resemble
Example 2-4. This is the Jinja2 template.

Example 2-4. The HTML template for the home page, using the Jinja2 template system

<html>
 <head>
 <title>The Time Is...</title>
 </head>
 <body>
 {% if user %}
 <p>
 Welcome, {{ user.email() }}!
 You can sign out.
 </p>
 {% else %}
 <p>
 Welcome!
 Sign in or register to customize.
 </p>
 {% endif %}
 <p>The time is: {{ current_time }}</p>
 </body>
</html>

Reload the page in your browser. The new page resembles Figure 2-2.

We’ve added a few new things to main.py:

import jinja2
import os

...

from google.appengine.api import users

You import the Jinja2 library the same way you would with a typical installation on
your computer. The libraries: section of app.yaml puts Jinja2 on the library search
path when running on App Engine.

30 | Chapter 2: Creating an Application

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-2. The clock app with a link to Google Accounts when the user is not signed in

We also import the os module to use in the next part, as well as the API for the Users
service:

template_env = jinja2.Environment(
 loader=jinja2.FileSystemLoader(os.getcwd()))

One way to configure Jinja2 is with an Environment object. This object maintains
aspects of the template system that are common across your app. In this case, we use
the Environment to declare that our template files are loaded from the filesystem,
using the FileSystemLoader.

We store the Jinja2 Environment object in a module global variable because we only
need to create this object once in the lifetime of the application instance. As with the
WSGIApplication object, the constructor is called when the module is imported, and
the object stays resident in memory.

Remember that we’ve turned on concurrent requests using the
threadsafe: true line in app.yaml. This tells App Engine to use
one instance to process multiple requests simultaneously. These
requests will share global module variables, and may interleave
instructions. This is fine for most common read-only uses of global
variables, such as configuration data, compiled regular expressions,
or the Jinja2 Environment object.

Developing the Application | 31

www.it-ebooks.info

http://www.it-ebooks.info/

The os.getcwd() value passed to the FileSystemLoader constructor tells it to find
templates in the current working directory. When the request handler is called, the
current working directory is the application root directory. If you move your tem‐
plates into a subdirectory (and that’s probably a good idea), this value needs to be
modified accordingly:

 current_time = datetime.datetime.now()
 user = users.get_current_user()
 login_url = users.create_login_url(self.request.path)
 logout_url = users.create_logout_url(self.request.path)

The request handler code calls the Users service API by using functions in the users
module from the google.appengine.api package. users.get_current_user()

returns an object of class users.User that represents the user making the request if
the user is signed in, or None (Python’s null value) if the user is not signed in. You can
use this value to access the user’s email address, which our application does from
within the template.

To allow a user to sign in or sign out, you direct the user’s browser to the Google
Accounts system “login” or “logout” URLs. The app gets these URLs using the
users.create_login_url() and users.create_logout_url() functions, respec‐
tively. These functions take a URL path for your application as an argument. Once the
user has signed in or signed out successfully, Google Accounts redirects the user back
to your app using that URL path. For this app, we direct the user to sign in or sign out
by presenting her with links to click. (In other situations, redirecting the user might
be more appropriate.)

 template = template_env.get_template('home.html')
 context = {
 'current_time': current_time,
 'user': user,
 'login_url': login_url,
 'logout_url': logout_url
 }
 self.response.out.write(template.render(context))

32 | Chapter 2: Creating an Application

www.it-ebooks.info

http://www.it-ebooks.info/

Here, we load the home.html template, set the dynamic data in the template’s “con‐
text,” render the template with the context values into the text of the page, and finally
write it to the response.

Within the template, we use a conditional section to display a different welcome mes‐
sage depending on whether the user is signed in or not. {% if user %} is true if the
context value we set to 'user' is considered true in Python, which it would be if
users.get_current_user() returned a User object. The {% else %} and {% endif
%} directives delimit the sections of the template to render, based on the condition.
{{ user.email() }} calls the email() method of the object, and interpolates its
return value into the template as a string. Similarly, {{ logout_url }},
{{ login_url }}, and {{ current_time }} interpolate the generated URLs we set in
the context.

For more information about Jinja2 template syntax and features,
see the Jinja2 website.

If you click the “Sign in or register” link with the app running in the development
server, the link goes to the development server’s simulated version of the Google
Accounts sign-in screen, as shown in Figure 2-3. At this screen, you can enter any
email address, and the development server will proceed as if you are signed in with an
account that has that address.

If this app were running on App Engine, the login and logout URLs would go to the
actual Google Accounts locations. Once signed in or out, Google Accounts redirects
back to the given URL path for the live application.

Click “Sign in or register,” then click the Login button on the simulated Google
Accounts screen, using the default test email address (test@example.com). The clock
app now looks like Figure 2-4. To sign out again, click the “sign out” link.

Developing the Application | 33

www.it-ebooks.info

http://jinja.pocoo.org/
http://www.it-ebooks.info/

Figure 2-3. The development server’s simulated Google Accounts sign-in screen

Using Python Virtual Environments
When we installed the Jinja2 library earlier, we added it directly to the collection of
libraries available to Python on our local computer. This is convenient for writing
software that’s meant to be run on your local computer, but not so convenient when
writing software that will be run elsewhere. It can be tricky to keep track of all of the
packages your software depends on, and ensure that those packages are installed—or
can be installed—in the environment where the software is to run. And if two
projects depend on different versions of a package, your computer’s site packages are
no help, because they can only contain one at a time.

The App Engine development server is smart about isolating your app under test
from packages you have installed locally that won’t be available in the live runtime
environment. If we didn’t specify jinja2 in the libraries: region of app.yaml, the
import jinja2 statement would have failed in the development server even if we had
the jinja2 package installed. Similarly, importing a module that’s installed locally but
would not otherwise be available on App Engine will fail locally.

34 | Chapter 2: Creating an Application

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-4. The clock app, with the user signed in

This is great, but it isn’t a complete solution. App Engine lets you request a specific
version of a library in app.yaml, and when your app is running on App Engine,
exactly that version will be loaded. In the development server, the requested version
is ignored, and it just imports whatever you have installed. If your app needs Django
1.3 but you have Django 1.5 installed, the development server will use Django 1.5, no
matter what app.yaml says. If you’re developing multiple projects on your computer
and two projects need different versions of the same library, site packages are insuffi‐
cient.

The solution is to use a virtual environment. A virtual environment is a Python
environment that is isolated from your main Python installation’s site packages. The
environment starts out clean, as if you installed Python for the first time. You can add
libraries to the virtual environment, and these will not affect the main Python instal‐
lation. And you can install different versions of the same libraries in different envi‐
ronments. These environments are “virtual” because they share the same Python
interpreter and standard library as your main installation, and use tools to manipu‐
late the Python library load path to isolate your app.

Virtual environments are a good practice for Python development in general, and
App Engine in particular. Let’s take a quick look at how to use them.

To get started, install the virtualenv library in your main Python installation:

pip install virtualenv

Developing the Application | 35

www.it-ebooks.info

http://www.it-ebooks.info/

As before, Mac OS X and Linux users will need sudo pip install virtualenv to
install this to the system’s Python, and Windows users may prefer python -m pip
install virtualenv.

Installing this package adds the virtualenv command to your system. In Mac OS X
and Linux, this is typically at /usr/local/bin/virtualenv. In Windows, it’s C:
\Python27\Scripts\virtualenv.exe, or you can use python -m virtualenv.

A virtual environment lives in a new directory. To create a new virtual environment,
change the current working directory to where you want this new environment direc‐
tory to live, then run the virtualenv command with a name for the new environ‐
ment:

virtualenv myapp_env

The command creates the directory and populates it with tools and its own site-
packages directory. To use the environment, you activate it. The process is only
slightly different between Mac OS X/Linux and Windows.

In Mac OS X or Linux, you use the shell’s source directive for this, like so:

source ./myapp_env/bin/activate

Similarly, in Windows, you activate a virtual environment with the activate.bat
script that virtualenv created in the environment’s Scripts\ directory:

myapp_env\Scripts\activate.bat

The command prompt changes to include the name of the active environment, like
so:

(myapp_env)~/

While the environment is active, the environment’s bin/ directory (or Scripts\ direc‐
tory in Windows) is at the beginning of your command path. This includes special
versions of python, easy_install, and pip that know how to use the virtual environ‐
ment. If you use any of these commands at the prompt, you’ll be using these
environment-specific versions.

Let’s do so now. Use pip to install Jinja2, like we did earlier:

pip install jinja2 markupsafe

Mac and Linux users, notice that sudo is not necessary as it was before, because we’re
modifying our own environment, not the system-wide Python installation.

You can now start the development server from the command line as usual, and it
will use the virtual environment for its libraries:

dev_appserver.py clock

36 | Chapter 2: Creating an Application

www.it-ebooks.info

http://www.it-ebooks.info/

In addition to taking package names on the command line, pip can read a list of
packages to install from a requirements file. This is a simple text file that lists the pack‐
ages to install. It can also request specific versions of the packages. For example, say
you had a file named requirements.txt with the following contents:

jinja2==2.6
markupsafe==0.15

To install the modules listed in this file, pass the filename to pip install using the
-r flag:

pip install -r requirements.txt

Using a requirements file that matches the libraries: section of app.yaml makes it
easy for you and other members of your team to set up a virtual environment that
looks exactly like the App Engine runtime environment for the app. Store this file in
your source control repository with the rest of your code.

To deactivate the environment and restore your command path, run the deactivate
command:

deactivate

To use a third-party library that is not provided by the runtime environment, you
must add the library to your application directory along with your application files.
This only works with “pure Python” libraries, and not libraries that depend on
natively compiled extensions. You can use pip to install these libraries as well, but
notice the key difference. Here, we used pip to install libraries in a local virtual envi‐
ronment to emulate what App Engine provides. When you install a library into your
app directory, you are adding the library’s Python code files to the app itself. These
files are uploaded to App Engine along with your app code.

To install a library into your app directory, use the -t flag with a path to a subdirec‐
tory that will contain it. It’s a good idea to reserve a lib/ directory in the app root for
this purpose:

pip install -t lib WTForms WTForms-Appengine

This creates the lib/ directory if needed, downloads the library packages, then installs
them. Once completed, lib/ contains directories ending in -info/ that are only used
during installation. You can delete these to reduce the number of files that get uploa‐
ded. The installed libraries reside in separate directories (such as lib/wtforms).

Developing the Application | 37

www.it-ebooks.info

http://www.it-ebooks.info/

To use these libraries, you must add the lib/ directory to the module lookup path. Put
this at the top of each module that contains request handler code:

import sys
sys.path.append('lib')

With this directory on the lookup path, you can import these libraries in the usual
way (such as import wtforms).

Datastore Models and Web Forms
Now that we know who the user is, we can ask her for her preferred time zone,
remember her preference, and use it on future visits.

First, we need a way to remember the user’s preferences so future requests can access
them. The Google Cloud Datastore provides reliable, scalable storage for this pur‐
pose. The Python API includes a data modeling interface that maps Python objects to
datastore entities. We can use it to write a UserPrefs class.

Create a new file named models.py, as shown in Example 2-5.

Example 2-5. The file models.py, with a class for storing user preferences in the datastore

from google.appengine.api import users
from google.appengine.ext import ndb

class UserPrefs(ndb.Model):
 tz_offset = ndb.FloatProperty(default=0.0)
 user = ndb.UserProperty(auto_current_user_add=True)

def get_userprefs(user_id=None):
 if not user_id:
 user = users.get_current_user()
 if not user:
 return None
 user_id = user.user_id()

 key = ndb.Key('UserPrefs', user_id)
 userprefs = key.get()
 if not userprefs:
 userprefs = UserPrefs(id=user_id)
 return userprefs

The Python data modeling interface is provided by the module ndb in the package
google.appengine.ext. A data model is a class whose base class is ndb.Model. The
model subclass defines the structure of the data in each object by using class proper‐
ties. This structure is enforced by ndb.Model when values are assigned to instance
properties. For our UserPrefs class, we define two properties: tz_offset, a floating-

38 | Chapter 2: Creating an Application

www.it-ebooks.info

http://www.it-ebooks.info/

point number of hours to offset UTC, and user, a User object returned by the Google
Accounts API.

Every datastore entity has a primary key. Unlike a primary key in a relational database
table, an entity key is permanent and can only be set when the entity is created. A key
is unique across all entities in the system, and consists of several parts, including the
entity’s kind (in this case, UserPrefs). An app can set one component of the key to an
arbitrary value, known in the API as the key name.

The clock application uses the user’s unique ID, provided by the user_id() method
of the User object, as the key name of a UserPrefs entity. This allows the app to fetch
the entity by key, as it knows the user’s ID from the Google Accounts API. Fetching
the entity by key is faster than performing a datastore query.

In models.py, we define a function named get_userprefs() that gets the UserPrefs
object for the user. After determining the user ID, the function constructs a datastore
key for an entity of the kind UserPrefs with a key name equivalent to the user ID. If
the entity exists in the datastore, the function returns the UserPrefs object.

If the entity does not exist in the datastore, the function creates a new UserPrefs
object with default settings and a key name that corresponds to the user. The new
object is not saved to the datastore automatically. The caller must invoke the put()
method on the UserPrefs instance to save it.

Now that we have a mechanism for getting a UserPrefs object, we can make two
upgrades to the main page. If the user is signed in, we can get the user’s preferences
(if any) and adjust the clock’s time zone.

Edit main.py. With the other import statements, import the models module we just
created:

import models

In the request handler code, call the models.get_userprefs() function, and use the
return value to adjust the current_time value. Also, add the userprefs value to the
template context:

class MainPage(webapp2.RequestHandler):
 def get(self):
 # ...
 userprefs = models.get_userprefs()

 if userprefs:
 current_time += datetime.timedelta(
 0, 0, 0, 0, 0, userprefs.tz_offset)

 template = template_env.get_template('home.html')
 context = {
 # ...

Developing the Application | 39

www.it-ebooks.info

http://www.it-ebooks.info/

 'userprefs': userprefs,
 }
 self.response.out.write(template.render(context))

Let’s also add a web form to the template so the user can set a time zone preference.
You’ll need to edit home.html, adding the following near the bottom of the template,
above the </body>:

 {% if user %}
 <form action="/prefs" method="post">
 <label for="tz_offset">
 Timezone offset from UTC (can be negative):
 </label>
 <input name="tz_offset" id="tz_offset" type="text"
 size="4" value="{{ userprefs.tz_offset }}" />
 <input type="submit" value="Set" />
 </form>
 {% endif %}

To enable the preferences form, we need a new request handler to parse the form data
and update the datastore. Let’s implement this as a new request handler module.
(We’ll see why in a moment.)

Create a file named prefs.py with the contents shown in Example 2-6.

Example 2-6. A new handler module, prefs.py, for the preferences form

import webapp2

import models

class PrefsPage(webapp2.RequestHandler):
 def post(self):
 userprefs = models.get_userprefs()
 try:
 tz_offset = float(self.request.get('tz_offset'))
 userprefs.tz_offset = tz_offset
 userprefs.put()
 except ValueError:
 # User entered a value that wasn't a float. Ignore for now.
 pass

 self.redirect('/')

application = webapp2.WSGIApplication([('/prefs', PrefsPage)],
 debug=True)

This request handler handles HTTP POST requests to the URL /prefs, which is the
URL (“action”) and HTTP method used by the form. Because it’s an HTTP POST
action, the code goes in the post() method (instead of the get() method used in
main.py). The handler code calls the get_userprefs() function from models.py to get

40 | Chapter 2: Creating an Application

www.it-ebooks.info

http://www.it-ebooks.info/

the UserPrefs object for the current user, which is either a new unsaved object with
default values, or the object for an existing entity. The handler parses the tz_offset
parameter from the form data as a float, sets the property of the UserPrefs object,
then saves the object to the datastore by calling its put() method. The put() method
creates the object if it doesn’t exist, or updates the existing object.

If the user enters something other than a floating-point number in the form field, we
don’t do anything. It’d be appropriate to return an error message, but we’ll leave this
as is to keep the example simple.

The form handler redirects the user’s browser to the / URL. In webapp2, the
self.redirect() method takes care of setting the appropriate response headers for
redirecting the browser.

Finally, as shown in Example 2-7, edit app.yaml to map the handler module to the
URL /prefs in the handlers: section.

Example 2-7. A new version of app.yaml mapping the URL /prefs, with login required

application: clock
version: 1
runtime: python27
api_version: 1
threadsafe: true

handlers:
- url: /prefs
 script: prefs.application
 login: required

- url: .*
 script: main.application

libraries:
- name: webapp2
 version: "2.5.2"
- name: jinja2
 version: "2.6"
- name: markupsafe
 version: "0.15"

The login: required line says that the user must be signed in to Google Accounts to
access the /prefs URL. If the user accesses the URL while not signed in, App Engine
automatically directs the user to the Google Accounts sign-in page, then redirects her
back to this URL afterward. This makes it easy to require sign-in for sections of your
site, and to ensure that the user is signed in before the request handler is called.

Developing the Application | 41

www.it-ebooks.info

http://www.it-ebooks.info/

Be sure to put the /prefs URL mapping before the .* mapping. URL patterns are
tried in order, and the first pattern to match determines the handler used for the
request. Because the pattern .* matches all URLs, /prefs must come first or it will be
ignored.

Reload the page to see the customizable clock in action. Try changing the time zone
by submitting the form. Also try signing out, then signing in again using the same
email address, and again with a different email address. The app remembers the time
zone preference for each user.

The Development Server Console
The development server has a handy feature for inspecting and debugging your appli‐
cation while testing on your local machine: a web-based console. With your develop‐
ment server running, visit the following URL in a browser to access the console:

http://localhost:8000/

(This is the same as the server URL, with a different port number: 8000.)

When the development server console opens for the first time, the Instances panel is
shown. At first, only one instance is running locally. The development server is multi‐
threaded, and can simulate an app running with multiple instances on App Engine.

In the left navigation, select datastore viewer. This lets you inspect and manipulate
the local simulated instance of Cloud Datastore being used by your app. If you com‐
pleted and tested the clock app described in this chapter, there should be at least one
entity in the viewer, showing its field data and other information. Figure 2-5 shows
the datastore viewer in this state.

The Datastore Viewer lets you list and inspect entities by kind, edit entities, and cre‐
ate new ones. You can edit the values for existing properties, but you cannot delete
properties or add new ones, nor can you change the type of the value. For new enti‐
ties, the console makes a guess as to which properties belong on the entity based on
existing entities of that kind, and displays a form to fill in those properties. Similarly,
you can only create new entities of existing kinds, and cannot create new kinds from
the console.

The development server console includes features for managing other aspects of the
simulated environment, such as task queues and messaging. We’ll look at these when
we discuss the corresponding services.

42 | Chapter 2: Creating an Application

www.it-ebooks.info

http://localhost:8000/
http://www.it-ebooks.info/

Figure 2-5. The development server console with the datastore viewer selected

Caching with Memcache
The code that gets user preferences data in Example 2-5 calls the key.get() method
to fetch the UserPrefs entity every time a signed-in user visits the site. User preferen‐
ces are often read and seldom changed, so calling the datastore with every request is
more expensive than it needs to be. We can mitigate the cost of reading from primary
storage by using a caching layer, secondary storage that’s faster to read than the data‐
store, but less permanent.

We can use the memory cache service (memcache) as secondary storage for user pref‐
erences data. Using memcache with the datastore this way is so common for App
Engine apps, the ndb library can do this automatically, and does it by default. We do
not need to change our code at all to take advantage of this feature.

To see our app use memcache, open the development server console, then select
Memcache Viewer. If you have already tried storing a time zone preference, the
console reports that the cache has one item in it. Click the Flush Cache button, and
confirm that you want to delete everything from the cache. In a new tab, visit the app
in the development server. If you already have a preference stored in the datastore,
the app loads it again, and stores it in memcache for future quick reference. (If you

Developing the Application | 43

www.it-ebooks.info

http://www.it-ebooks.info/

don’t have a preference stored, store one now.) Go back to the memcache viewer and
reload. Memcache once again contains an item, the cached version of the UserPrefs
object.

The ndb library knows to delete the object in the cache whenever it updates the object
in the datastore. This keeps fresh data in the cache. However, this behavior is not
guaranteed. Memcache and the datastore are separate services, and it is possible for
the update to the datastore to succeed and the delete from memcache to fail. In this
case, memcache has stale data. To mitigate the problem this may cause, memcache
only retains values for a limited amount of time. You can adjust the maximum
amount of time it will retain a value. You can also disable ndb’s use of memcache
completely.

Later, in Chapter 9, we’ll discuss ndb’s use of memcache in detail. In Chapter 12, we’ll
see how to call the memcache service directly, such as for storing the results of com‐
putation or network access.

The Python Interactive Console
An especially useful feature exclusive to the Python development server is the Inter‐
active Console. This feature lets you type arbitrary Python code directly into a web
form and see the results displayed in the browser. You can use this to write ad hoc
Python code to test and manipulate the datastore, memcache, and global data within
the local development server.

Here’s an example: run your clock application, sign in with an email address, and then
set a time zone preference, such as -8. Now open the development server console,
then select Interactive Console. In the lefthand text box, enter the following, where -8
is the time zone preference you used:

import models

q = models.UserPrefs.gql("WHERE tz_offset = -8")

for prefs in q:
 print prefs.user

Click the Execute button. The code runs, and the email address you used appears
below.

Code run in the development server console behaves just like application code. If you
perform a datastore query that needs a custom index, the development server adds
configuration for that index to the application’s index.yaml configuration file. Data‐
store index configuration is discussed in Chapter 7.

44 | Chapter 2: Creating an Application

www.it-ebooks.info

http://www.it-ebooks.info/

2 The descriptions and screenshots of the Google Developers Console in this book are current as of the time
this material was produced. Google improves the Console continuously, and some descriptions may be out of
date by the time you read this. Such is life.

3 As of this writing, there is one obscure feature that does not yet support custom domains: incoming XMPP
messages. I’m not aware of another case where end users must interact with a project ID when the app has a
custom domain.

Registering the Application
Before you can upload your application to App Engine and share it with the world,
you must first register a project ID. It’s time to introduce the Cloud Console.

To access the Cloud Console, visit the following URL in your browser, signing in with
your Google account if necessary:

https://console.developers.google.com/

Bookmark or memorize this URL, as you’ll be back here frequently once your app is
live. The Cloud Console is home base for all of your cloud projects.

The home screen lists all of your current projects (if any), and gives you access to
your Cloud-related account settings and billing information.2

It costs nothing to create a project. You can have up to 25 free projects per Google
account, and you can delete projects later. You can have an unlimited number of paid
applications. Note that you will be reserving a unique ID when you create a project,
and IDs for deleted projects cannot be reclaimed.

In the Projects section, click the Create Project button. When prompted, enter a
project name. The Console generates a unique project ID for you, but you can change
it to something more memorable if you like. As we’re about to see, the ID is used in
test URLs and a few other places. If you intend to register a domain name for your
web application, you will not need to show your project ID to your users.3 You cannot
change the ID after the project has been created (but you can delete the project and
create a new one). Click Create to create the project.

Uploading the Application
In a traditional web application environment, releasing an application to the world
can be a laborious process. Getting the latest software and configuration to multiple
web servers and backend services in the right order and at the right time to minimize
downtime and prevent breakage is often a difficult and delicate process. With App
Engine, deployment is as simple as uploading the files with a single click or com‐

Registering the Application | 45

www.it-ebooks.info

https://console.developers.google.com/
http://www.it-ebooks.info/

mand. You can upload and test multiple versions of your application, and set any
uploaded version to be the current public version.

Edit your app.yaml configuration file, and replace the application: value with the
project ID you registered in the previous step:

application: saucy-boomerang-123

From a command prompt, run the appcfg.py command as follows, substituting the
path to your application directory for clock:

appcfg.py update clock

As with dev_appserver.py, clock is just the path to the directory. If the current
working directory is the clock/ directory, you can use the relative path, a dot (.).

The appcfg.py tool uses your Google credentials to communicate with Google. These
are the credentials you set up earlier with the gcloud auth login command.

If you intend to use the gcloud command to access other Cloud
Platform services, you can tell it to use your new project by default
using this command:

gcloud config set project saucy-boomerang-123

To see all of the gcloud configuration fields that you can set in this
way, use the following command:

gcloud config list

The upload process determines the project ID and version number from the app.yaml
configuration file, then uploads and installs the files and configuration as the given
version of the app. The app starts running on App Engine immediately.

Testing the App
Every App Engine project gets a free domain name consisting of the project ID fol‐
lowed by .appspot.com. For example, if your project ID is saucy-boomerang-123,
you can access the app at this URL:

 http://saucy-boomerang-123.appspot.com/

Visit your app’s URL in a browser, and confirm that it works as expected.

Next, go back to the Cloud Console and select your project. The Overview section
now displays graphs representing your test traffic. Figure 2-6 shows an example.

46 | Chapter 2: Creating an Application

www.it-ebooks.info

https://console.developers.google.com/
http://www.it-ebooks.info/

Figure 2-6. The Cloud Console overview screen for a small app (this book’s website)

Navigate to Compute, then App Engine, and finally Dashboard. This dashboard
shows more detailed graphs than the project overview and is specific to the App
Engine part of Cloud Platform. You should see a small spike in the requests-per-
second chart, referring to your test traffic. The scale of the chart goes up to the high‐
est point in the chart, so the spike reaches the top of the graph, even though you have
only accessed the application a few times.

Next, open Monitoring in the sidebar, then select the Logs panel. All requests served
by App Engine are logged with details about the request and the app’s response. These
records also include all messages logged by the application code during the request.
Click a record to expand it for more information. You can scroll up and down to
attempt to load more records in either direction on the timeline. You can also filter

Testing the App | 47

www.it-ebooks.info

http://www.it-ebooks.info/

records by log level (such as to only show requests during which your app logged
errors), time, label, or a regular expression match.

Take a moment to browse the Console. Throughout this book, we discuss how an
application consumes system resources, and how you can optimize an app for speed
and cost effectiveness. You will use the Cloud Console to track resource consumption
and diagnose problems.

Google improves the Cloud Console continuously, and menus and
buttons may have changed since the time this book was written. In
particular, as features graduate from App Engine to Cloud Platform
as a whole, their Console panels may relocate in the navigation bar.

Enabling Billing
When you created the project in Cloud Console, you were prompted to set up a bill‐
ing account, or associate an existing billing account with the project. Google uses this
account’s payment information when the project accrues charges.

Google App Engine costs nothing to get started. Simply by creating a project, Google
grants you a limited amount of application resources so you can create an app, try the
features of the platform, and get your app working and serving live traffic. When
you’re ready, you can set a spending limit to make more resources available. This
limit applies to all resources managed by App Engine. Other Cloud Platform services,
such as Compute Engine, are billed separately.

The default budget is zero dollars, and you will not be billed for App Engine resour‐
ces until you increase it. You can use the Cloud Console to set the budget. To do so,
expand Compute in the sidebar nav, then App Engine, then Settings. Adjust the daily
budget, then save your preferences.

48 | Chapter 2: Creating an Application

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Configuring an Application

Many of App Engine’s features can be tailored and controlled using configuration files
that you deploy alongside your code. A few of these features apply to the entire proj‐
ect’s use of a service, such as datastore index configuration (which we’ll cover in
Chapter 7). The most important configuration file controls how App Engine manages
incoming requests, how App Engine runs your code on its scalable servers, and how
App Engine routes requests to your code on those servers.

To build an App Engine application, you write code for one or more request handlers,
and provide configuration describing to App Engine which requests go to which han‐
dlers. The life of a request handler begins when a single request arrives, and ends
when the handler has done the necessary work and computed the response. App
Engine does all the heavy lifting of accepting incoming TCP/IP connections, reading
HTTP request data, ensuring that an instance of your app is running on an applica‐
tion server, routing the request to an available instance, calling the appropriate
request handler code in your app, and collecting the response from the handler and
sending it back over the connection to the client.

The system that manages and routes requests is known generally as the App Engine
frontend. You can configure the frontend to handle different requests in different
ways. For instance, you can tell the frontend to route requests for some URLs to App
Engine’s static file servers instead of the application servers, for efficient delivery of
your app’s images, CSS, or JavaScript code. If your app takes advantage of Google
Accounts for its users, you can tell the frontend to route requests from signed-in
users to your application’s request handlers, and to redirect all other requests to the
Google Accounts sign-in screen. The frontend is also responsible for handling
requests over secure connections, using HTTP over SSL/TLS (sometimes called
“HTTPS,” the URL scheme for such requests). Your app code only sees the request
after it has been decoded, and the frontend takes care of encoding the response.

49

www.it-ebooks.info

http://www.it-ebooks.info/

In this chapter, we take a look at App Engine’s request handling architecture, and fol‐
low the path of a web request through the system. We discuss how to configure the
system to handle different kinds of requests, including requests for static content,
requests for the application to perform work, and requests over secure connections.
We also cover other frontend features such as custom error pages, and application
features you can activate called “built-ins.”

We’ll also take this opportunity to discuss related features that you manage from the
Cloud Console, including setting up custom domain names and SSL/TLS certificates.

The App Engine Architecture
The architecture of App Engine—and therefore an App Engine application—can be
summarized as shown in Figure 3-1. (There are some lines missing from this simpli‐
fied diagram. For instance, frontends have direct access to Cloud Storage for serving
large data objects from app URLs. We’ll take a closer look at these in later chapters.)

Figure 3-1. The App Engine request handling architecture

The first stop for an incoming request is the App Engine frontend. A load balancer, a
dedicated system for distributing requests optimally across multiple machines, routes
the request to one of many frontend servers. The frontend determines the app for
which the request is intended from the request’s domain name, either the associated
custom domain or subdomain, or the appspot.com subdomain. It then consults the
app’s configuration to determine the next step.

The app’s configuration describes how the frontends should treat requests based on
their URL paths. A URL path may map to a static file that should be served to the
client directly, such as an image or a file of JavaScript code. Or, a URL path may map
to a request handler, application code that is invoked to determine the response

50 | Chapter 3: Configuring an Application

www.it-ebooks.info

http://www.it-ebooks.info/

for the request. You upload this configuration data along with the rest of your appli‐
cation.

If the URL path for a request does not match anything in the app’s configuration, the
frontends return an HTTP 404 Not Found error response to the client. By default, the
frontends return a generic error response. If you want clients to receive a custom
response when accessing your app, such as a friendly HTML message along with the
error code, you can configure the frontend to serve a static HTML file. (In the case of
Not Found errors, you can also just map all unmatched URL paths to an application
handler, and respond any way you like.)

If the URL path of the request matches the path of one of the app’s static files, the
frontend routes the request to the static file servers. These servers are dedicated to the
task of serving static files, with network topology and caching behavior optimized for
fast delivery of resources that do not change often. You tell App Engine about your
app’s static files in the app’s configuration. When you upload the app, these files are
pushed to the static file servers.

If the URL path of the request matches a pattern mapped to one of the application’s
request handlers, the frontend sends the request to the app servers. The app server
pool starts up an instance of the application on a server, or reuses an existing instance
if there is one already running. The server invokes the app by calling the request han‐
dler that corresponds with the URL path of the request, according to the app configu‐
ration.

An instance is a copy of your application in the memory of an application server. The
instance is isolated from whatever else is running on the machine, set up to perform
equivalently to a dedicated machine with certain hardware characteristics. The code
itself executes in a runtime environment prepared with everything the request handler
needs to inspect the request data, call services, and evaluate the app’s code. There’s
enough to say about instances and the runtime environment that an entire chapter is
dedicated to the subject (Chapter 4).

You can configure the frontend to authenticate the user with Google Accounts. The
frontend can restrict access to URL paths with several levels of authorization: all
users, users who have signed in, and users who are application administrators. The
frontend checks whether the user is signed in, and redirects the user to the Google
Accounts sign-in screen if needed.

The frontend takes the opportunity to tailor the response to the client. Most notably,
the frontend compresses the response data, using the gzip format, if the client gives
some indication that it supports compressed responses. This applies to both app
responses and static file responses, and is done automatically. The frontend uses sev‐
eral techniques to determine when it is appropriate to compress responses, based on
web standards and known browser behaviors. If you are using a custom client that

The App Engine Architecture | 51

www.it-ebooks.info

http://www.it-ebooks.info/

does not support compressed content, simply omit the “Accept-Encoding” request
header to disable the automatic gzip behavior. Similarly, for clients that support the
SPDY protocol, App Engine will use SPDY instead of HTTP 1.1, automatically and
invisibly.

The frontends, app servers, and static file servers are governed by an “app master.”
Among other things, the app master is responsible for deploying new versions of
application software and configuration, and updating the “default” version served on
an app’s user-facing domain. Updates to an app propagate quickly, but are not atomic
in the sense that only code from one version of an app is running at any one time. If
you switch the default version to new software, all requests that started before the
switch are allowed to complete using their version of the software. If you have an app
that makes an HTTP request to itself, you might run into a situation where an older
version is calling a newer version or vice versa, but you can manage this in code if
needed.

Configuring a Python App
The files for a Python application include Python code for request handlers and libra‐
ries, static files, and configuration files. On your computer, these files reside in the
application root directory. Static files and application code may reside in the root
directory or in subdirectories. Configuration files always reside in fixed locations in
the root directory.

You configure the frontend for a Python application using a file named app.yaml in
the application root directory. This file is in a format called YAML, a concise human-
readable data format with support for nested structures like sequences and mappings.

Example 3-1 shows an example of a simple app.yaml file. We’ll discuss these features
in the following sections. For now, notice a few things about the structure of the file:

• The file is a mapping of values to names. For instance, the value python is associ‐
ated with the name runtime.

• Values can be scalars (python, 1), sequences of other values, or mappings of val‐
ues to names. The value of handlers in Example 3-1 is a sequence of two values,
each of which is a mapping containing two name-value pairs.

• Order is significant in sequences, but not mappings.
• YAML uses indentation to indicate scope.
• YAML supports all characters in the Unicode character set. The encoding is

assumed to be UTF-8 unless the file uses a byte order mark signifying UTF-16.

52 | Chapter 3: Configuring an Application

www.it-ebooks.info

http://www.it-ebooks.info/

• A YAML file can contain comments. All characters on a line after a # character
are ignored, unless the # is in a quoted string value.

Example 3-1. An example of an app.yaml configuration file

application: ae-book
version: 1
runtime: python27
api_version: 1
threadsafe: true

handlers:
- url: /css
 static_dir: css

- url: /.*
 script: main.application

libraries:
- name: webapp2
 version: "2.5.2"

Runtime Versions
Among other things, this configuration file declares that this application (or, specifi‐
cally, this version of this application) uses the Python 2.7 runtime environment. It
also declares which version of the Python 2.7 runtime environment to use. Currently,
there is only one version of this environment, so api_version is always 1. If Google
ever makes changes to the runtime environment that may be incompatible with exist‐
ing applications, the changes may be released using a new version number. Your app
will continue to use the version of the runtime environment specified in your config‐
uration file, giving you a chance to test your code with the new runtime version
before upgrading your live application.

You specify the name and version of the runtime environment in app.yaml, using the
runtime and api_version elements, like so:

runtime: python27
api_version: 1

Google originally launched App Engine with a runtime environment based on
Python 2.5. You can use this older environment by specifying a runtime of python.
Note that this book mostly covers the newer Python 2.7 environment. You’ll want to
use Python 2.7 for new apps, as many recent features only work with the newer envi‐
ronment.

Configuring a Python App | 53

www.it-ebooks.info

http://www.it-ebooks.info/

App IDs and Versions
Every App Engine application has an application ID that uniquely distinguishes the
app from all other applications. As described in Chapter 2, you can register an ID for
a new application using the Cloud Console. Once you have an ID, you add it to the
app’s configuration so the developer tools know that the files in the app root directory
belong to the app with that ID. This ID appears in the appspot.com domain name:

 app-id.appspot.com

The app’s configuration also includes a version identifier. Like the app ID, the version
identifier is associated with the app’s files when the app is uploaded. App Engine
retains one set of files and frontend configuration for each distinct version identifier
used during an upload. If you do not change the app version in the configuration
before you upload files, the upload replaces the existing files for that version.

Each distinct version of the app is accessible at its own domain name, of the following
form:

 version-id.app-id.appspot.com

When you have multiple versions of an app uploaded to App Engine, you can use the
Cloud Console to select which version is the one you want the public to access. The
Console calls this the “default” version. When a user visits your custom domain or the
appspot.com domain without the version ID, she sees the default version.

The appspot.com domain containing the version ID supports an additional domain
part, just like the default appspot.com domain:

 anything.version-id.app-id.appspot.com

Unless you explicitly prevent it, anyone who knows your applica‐
tion ID and version identifiers can access any uploaded version of
your application using the appspot.com URLs. You can restrict
access to nondefault versions of the application by using code that
checks the domain of the request and only allows authorized users
to access the versioned domains. You can’t restrict access to static
files this way.
Another way to restrict access to nondefault versions is to use Goo‐
gle Accounts authorization, described later in this chapter. You can
restrict access to app administrators while a version is in develop‐
ment, then replace the configuration to remove the restriction just
before making that version the default version.

All versions of an app access the same datastore, memcache, and other services, and
all versions share the same set of resources. Later on, we’ll discuss other configuration

54 | Chapter 3: Configuring an Application

www.it-ebooks.info

http://www.it-ebooks.info/

files that control these backend services. These files are separate from the configura‐
tion files that control the frontend because they are not specific to each app version.

There are several ways to use app versions. For instance, you can have just one ver‐
sion, and always update it in place. Or you can have a “dev” version for testing and a
“live” version that is always the public version, and do separate uploads for each.
Some developers generate a new app version identifier for each upload based on the
version numbers used by a source code revision control system.

You can have up to 60 active versions, if billing is enabled for the app. You can delete
previous versions, using the Cloud Console or the appcfg.py command.

Application IDs and version identifiers can contain numbers, lowercase letters, and
hyphens.

The application ID and version identifier appear in the app.yaml file. The app ID is
specified with the name application. The version ID is specified as version.

Here is an example of app.yaml using dev as the version identifier:

application: ae-book
version: dev

This would be accessible using this domain name:

 http://dev.ae-book.appspot.com/

Multithreading
The Python 2.7 runtime environment supports handling multiple requests concur‐
rently within each instance. This is a significant way to make the most of your instan‐
ces, and is recommended. However, your code must be written with the knowledge
that it will be run concurrently, and take the appropriate precautions with shared
data. You must declare whether your code is “threadsafe” in your application configu‐
ration.

To set this preference, specify the threadsafe value in app.yaml, either true or false:

threadsafe: true

Request Handlers
The app configuration tells the frontend what to do with each request, routing it to
either the application servers or the static file servers. The destination is determined
by the URL path of the request. For instance, an app might send all requests whose
URL paths start with /images/ to the static file server, and all requests for the site’s
home page (the path /) to the app servers. The configuration specifies a list of pat‐
terns that match URL paths, with instructions for each pattern.

Multithreading | 55

www.it-ebooks.info

http://www.it-ebooks.info/

For requests intended for the app servers, the configuration also specifies the request
handler responsible for specific URL paths. A request handler is an entry point into
the application code. With the Python runtime environment, this entry point is an
object that conforms to the Web Server Gateway Interface (WSGI). All Python web
application frameworks provide this object for use with application containers such
as App Engine.

The URL /form is reserved by App Engine and cannot be used by
the app. The explanation for this is historical and internal to App
Engine, and unfortunately this is easy to stumble upon by accident.
This URL will always return a 404 Not Found error.
All URL paths under /_ah/ are reserved for use by App Engine
libraries and tools.

All URL paths for Python apps are described in the app.yaml file, using the handlers
element. The value of this element is a sequence of mappings, where each item
includes a pattern that matches a set of URL paths and instructions on how to handle
requests for those paths. Here is an example with four URL patterns:

handlers:
- url: /profile/.*
 script: userprofile.application

- url: /css
 static_dir: css

- url: /info/(.*\.xml)
 static_files: datafiles/\1
 upload: datafiles/.*\.xml

- url: /.*
 script: main.application

The url element in a handler description is a regular expression that matches URL
paths. Every path begins with a forward slash (/), so a pattern can match the begin‐
ning of a path by also starting with this character. This URL pattern matches all paths:

url: /.*

If you are new to regular expressions, here is the briefest of tutorials: the . character
matches any single character, and the * character says the previous symbol, in this
case any character, can occur zero or more times. There are several other characters
with special status in regular expressions. All other characters, like /, match literally.
So this pattern matches any URL that begins with a / followed by zero or more of any
character.

56 | Chapter 3: Configuring an Application

www.it-ebooks.info

http://www.it-ebooks.info/

1 The word “script” is a misnomer: the value is a Python path to a variable. In the legacy Python 2.5 runtime
environment, this is a filesystem path to a Python CGI script. The object path more accurately represents the
resident WSGI app.

If a special character is preceded by a backslash (\), it is treated as a literal character
in the pattern. Here is a pattern that matches the exact path /home.html:

- url: /home\.html

See the Python documentation for the re module for an excellent introduction to reg‐
ular expressions. The actual regular expression engine used for URL patterns is not
Python’s, but it’s similar.

App Engine attempts to match the URL path of a request to each handler pattern in
the order the handlers appear in the configuration file. The first pattern that matches
determines the handler to use. If you use the catchall pattern /.*, make sure it’s the
last one in the list, as a later pattern will never match.

To map a URL path pattern to application code, you provide a script element. The
value is the Python import path (with dots) to a global variable containing a WSGI
application instance.1 The application root directory is in the lookup path, so in the
preceding example, main.application could refer to the application variable in a
Python source file named main.py:

import webapp2

class MainPage(webapp2.RequestHandler):
 def get(self):
 # ...

application = webapp2.WSGIApplication([('/', MainPage)], debug=True)

If the frontend gets a request whose path matches a script handler, it routes the
request to an application server to invoke the script and produce the response.

In the previous example, the following handler definition routes all URL paths that
begin with /profile/ to the application defined in a source file named userpro‐
file.py:

- url: /profile/.*
 script: userprofile.application

The URL pattern can use regular expression groups to determine other values, such
as the script path. A group is a portion of a regular expression inside parentheses, and
the group’s value is the portion of the request URL that matches the characters within
(not including the parentheses). Groups are numbered starting with 1 from left to
right in the pattern. You can insert the value of a matched group into a script path or
other values with a backslash followed by the group number (\1). For example:

Request Handlers | 57

www.it-ebooks.info

http://www.it-ebooks.info/

- url: /project/(.*?)/home
 script: apps.project_code.\1.app

With this pattern, a request for /project/registration/home would be handled by
the WSGI application at apps.project_code.registration.app.

Static Files and Resource Files
Most web applications have a set of files that are served verbatim to all users, and do
not change as the application is used. These can be media assets like images used for
site decoration, CSS stylesheets that describe how the site should be drawn to the
screen, JavaScript code to be downloaded and executed by a web browser, or HTML
for full pages with no dynamic content. To speed up the delivery of these files and
improve page rendering time, App Engine uses dedicated servers for static files. Using
dedicated servers also means the app servers don’t have to spend resources on
requests for static files.

Static files are uploaded with your code when you deploy the application. This makes
them well suited for web support files like images of icons, but not so well suited for
content files like photos to accompany a magazine article. In most cases, content
served by your web application belongs in a content management system built into
your app that separates the content publishing workflow from the application deploy‐
ment workflow.

Locally, static files sit with your app code in the app’s root directory. You tell the
deployment process and the frontend which of the application’s files are static files
using app configuration. The deployment process reads the configuration and deliv‐
ers the static files to the dedicated static file servers. The frontend remembers which
URL paths refer to static files, so it can route requests for those paths to the appropri‐
ate servers.

The static file configuration can also include a recommendation for a cache expira‐
tion interval. App Engine returns the cache instructions to the client in the HTTP
header along with the file. If the client chooses to heed the recommendation (and
most web browsers do), it will retain the file for up to that amount of time, and use its
local copy instead of asking for it again. This reduces the amount of bandwidth used,
but at the expense of clients retaining old copies of files that may have changed.

To save space and reduce the amount of data involved when setting up new app
instances, static files are not pushed to the application servers. This means application
code cannot access the contents of static files by using the filesystem.

The files that do get pushed to the application servers are known as “resource files.”
These can include app-specific configuration files, web page templates, or other static
data that is read by the app but not served directly to clients. Application code can

58 | Chapter 3: Configuring an Application

www.it-ebooks.info

http://www.it-ebooks.info/

access these files by reading them from the filesystem. The code itself is also accessi‐
ble this way.

We’ve seen how request handlers defined in the app.yaml file can direct requests to
scripts that run on the app servers. Handler definitions can also direct requests to the
static file servers.

There are two ways to specify static file handlers. The easiest is to declare a directory
of files as static, and map the entire directory to a URL path. You do this with the
static_dir element, as follows:

handlers:
- url: /images
 static_dir: myimgs

This says that all the files in the directory myimgs/ are static files, and the URL path
for each of these files is /images/ followed by the directory path and filename of the
file. If the app has a file at the path myimgs/people/frank.jpg, App Engine pushes this
file to the static file servers, and serves it whenever someone requests the URL
path /images/people/frank.jpg.

Notice that with static_dir handlers, the url pattern does not include a regular
expression to match the subpath or filename. The subpath is implied: whatever
appears in the URL path after the URL pattern becomes the subpath to the file in the
directory.

The other way to specify static files is with the static_files element. With
static_files, you use a full regular expression for the url. The URL pattern can use
regular expression groups to match pieces of the path, then use those matched pieces
in the path to the file. The following is equivalent to the static_dir handler shown
earlier:

- url: /images/(.*)
 static_files: myimgs/\1
 upload: myimgs/.*

The parentheses in the regular expression identify which characters are members of
the group. The \1 in the file path is replaced with the contents of the group when
looking for the file. You can have multiple groups in a pattern, and refer to each
group by number in the file path. Groups are numbered in the order they appear in
the pattern from left to right, where \1 is the leftmost pattern, \2 is the next, and
so on.

When using static_files, you must also specify an upload element. This is a regu‐
lar expression that matches paths to files in the application directory on your com‐
puter. App Engine needs this pattern to know which files to upload as static files,
because it cannot determine this from the static_files pattern alone (as it can with
static_dir).

Static Files and Resource Files | 59

www.it-ebooks.info

http://www.it-ebooks.info/

While developing a Python app, you keep the app’s static files in the application direc‐
tory along with the code and configuration files. Application code files and static files
are separated based on the configuration during the deployment process.

The Python SDK treats every file as either a resource file or a static file. If you have a
file that you want treated as both a resource file (available to the app via the filesys‐
tem) and a static file (served verbatim from the static file servers), you can create a
symbolic link in the project directory to make the file appear twice to the deployment
tool under two separate names. The file will be uploaded twice, and count as two files
toward the file count limit.

MIME Types
When the data of an HTTP response is of a particular type, such as a JPEG image,
and the web server knows the type of the data, the server can tell the client the type of
the data by using an HTTP header in the response. The type can be any from a long
list of standard type names, known as MIME types. If the server doesn’t say what the
type of the data is, the client has to guess, and may guess incorrectly.

By default, for static files, App Engine will guess the file type based on the last few
characters of the filename (such as .jpeg). If the filename does not end in one of sev‐
eral known extensions, App Engine serves the file as the MIME type application/
octet-stream, a generic type most web browsers treat as generic binary data.

If this is not sufficient, you can specify the MIME type of a set of static files by using
the mime_type element in the static file handler configuration. For example:

- url: docs/(.*)\.ps
 static_files: psoutput/\1.dat
 upload: psoutput/.*\.dat
 mime_type: application/postscript

This says that the application has a set of datafiles in a directory named psoutput/
whose filenames end in .dat, and these should be served using URL paths that consist
of docs/, followed by the filename with the .dat replaced with .ps. When App Engine
serves one of these files, it declares that the file is a PostScript document.

You can also specify mime_type with a static_dir handler. All files in the directory
are served with the declared type.

Cache Expiration
It’s common for a static file to be used on multiple web pages of a site. Because static
files seldom change, it would be wasteful for a web browser to download the file every
time the user visits a page. Instead, browsers can retain static files in a cache on the
user’s hard drive, and reuse the files when they are needed.

60 | Chapter 3: Configuring an Application

www.it-ebooks.info

http://www.it-ebooks.info/

To do this, the browser needs to know how long it can safely retain the file. The
server can suggest a maximum cache expiration in the HTTP response. You can con‐
figure the cache expiration period App Engine suggests to the client.

To set a default cache expiration period for all static files for an app, you specify a
default_expiration value. This value applies to all static file handlers, and belongs
at the top level of the app.yaml file, like so:

application: ae-book
version: 1
runtime: python
api_version: 1

default_expiration: "5d 12h"

handlers:
 # ...

The value is a string that specifies a number of days, hours, minutes, and seconds. As
shown here, each number is followed by a unit (d, h, m, or s), and values are separated
by spaces.

You can also specify an expiration value for static_dir and static_files handlers
individually, using an expiration element in the handler definition. This value over‐
rides the default_expiration value, if any. For example:

handlers:
- url: /docs/latest
 static_dir: /docs
 expiration: "12h"

If the configuration does not suggest a cache expiration period for a set of static files,
App Engine does not give an expiration period when serving the files. Browsers will
use their own caching behavior in this case, and may not cache the files at all.

Sometimes you want a static file to be cached in the browser as long as possible, but
then replaced immediately when the static file changes. A common technique is to
add a version number for the file to the URL, then use a new version number from
the app’s HTML when the file changes. The browser sees a new URL, assumes it is a
new resource, and fetches the new version.

You can put the version number of the resource in a fake URL parameter, such
as /js/code.js?v=19, which gets ignored by the static file server. Alternatively, in
Python, you can use regular expression matching to match all versions of the URL
and route them to the same file in the static file server, like so:

- handlers:
 url: /js/(.*)/code.js
 static_files: js/code.js
 expiration: "90d"

Static Files and Resource Files | 61

www.it-ebooks.info

http://www.it-ebooks.info/

This handler serves the static file js/code.js for all URLs such as /js/v19/code.js,
using a cache expiration of 90 days.

If you’d like browsers to reload a static file resource automatically
every time you launch a new major version of the app, you can use
the multiversion URL handler just discussed, then use the
CURRENT_VERSION_ID environment variable as the “version” in the
static file URLs:

self.response.out('<script src="/js/' +
 os.environ['CURRENT_VERSION_ID'] +
 '/code.js" />')

Domain Names
Every app gets a free domain name on appspot.com, based on the application ID.
Requests for URLs that use your domain name are routed to your app by the fron‐
tend:

 http://app-id.appspot.com/path...

But chances are, you want to use a custom domain name with your app. You can reg‐
ister your custom domain name with any Internet domain registrar. With your
domain name, you will also need Domain Name Service (DNS) hosting, a service that
advertises the destination associated with your name (in this case, App Engine).
Name registrars such as Hover include DNS hosting with the cost of the registration.
Alternatively, you can use Google Cloud DNS, a high-performance DNS solution
with powerful features.

You can configure your domain name so that all requests for the name (example.com)
go to App Engine, or so only requests for a subdomain (such as www.example.com) go
to App Engine. You might use a subdomain if the root domain or other subdomains
are pointing to other services, such as a company website hosted on a different ser‐
vice.

If you intend to support secure web traffic over secure connections
(SSL/TLS, aka “HTTPS”), skip ahead to the next section, “Google
Apps” on page 64. You must use Google Apps to set up your cus‐
tom domain to use SSL/TLS with the domain.
The appspot.com domain supports SSL/TLS. See “Configuring
Secure Connections” on page 67 for more information.

62 | Chapter 3: Configuring an Application

www.it-ebooks.info

http://www.hover.com/
https://cloud.google.com/dns/docs
http://www.it-ebooks.info/

To set up a custom domain, go to Cloud Console, select the project, then select Com‐
pute, App Engine, Settings. From the tabs along the top, select “Custom domains.”
This panel is shown in Figure 3-2.

Figure 3-2. The “Custom domains” settings panel

The setup procedure involves three main steps:

1. Verify that you own the domain. You can verify the domain by adding a verifica‐
tion code to the DNS record, or if the domain is already pointing to a web host,
by adding a verification code to a file on the web host.

2. Add the domain or subdomain to the project.
3. Configure the DNS record to point to App Engine.

Cloud Console will walk you through these steps with specific instructions.

Domain Names | 63

www.it-ebooks.info

http://www.it-ebooks.info/

The appspot.com domain has a couple of useful features. One such feature is the abil‐
ity to accept an additional domain name part:

 anything.app-id.appspot.com

Requests for domain names of this form, where anything is any valid single domain
name part (that cannot contain a dot, .), are routed to the application. This is useful
for accepting different kinds of traffic on different domain names, such as for allow‐
ing your users to serve content from their own subdomains.

You can determine which domain name was used for the request in your application
code by checking the Host header on the request. Here’s how you check this header
using Python and webapp:

class MainHandler(webapp2.RequestHandler):
 def get(self):
 host = self.request.headers['Host']

 self.response.out.write('Host: %s' % host)

Google Apps
Google Apps is a service that gives your organization its own suite of Google’s pro‐
ductivity applications, such as Gmail, Docs, Drive, and Hangouts. These apps live on
subdomains of your organization’s Internet domain name (such as Google Drive on
drive.example.com), and your organization’s employees all get Google accounts
using the domain name (juliet@example.com). Access to all of the apps and
accounts can be managed by the domain administrator, making the suite suitable for
businesses, schools, and government institutions. Google Apps for Work is available
for a per user per month fee. If your organization is a school, be sure to look for Goo‐
gle Apps for Education, which is free of charge.

A compelling feature of Google Apps is the ability to add an App Engine application
on a subdomain (yourapp.example.com, or even www.example.com). You can config‐
ure App Engine’s Google accounts features to support domain accounts specifically,
making it easy to built intranet apps that only your organization’s members can see.
You can also make the app on your domain accessible to the public—with no per-user
fee for doing so. (The per-user fee only applies to accounts on the domain. You will
still need one administrator account.) You can configure a public app on a domain to
accept regular Google accounts, or you can implement your own account mecha‐
nism.

64 | Chapter 3: Configuring an Application

www.it-ebooks.info

http://www.it-ebooks.info/

Google Apps is currently the only way to use secure connections
(SSL/TLS, aka “HTTPS”) with custom domains on App Engine.
This has the advantage of using the Google Apps SSL/TLS infra‐
structure. In exchange, you lose the ability to serve the App Engine
app from the “naked” domain (http://example.com/): all Google
Apps applications must be associated with a subdomain (such as
www.example.com). We’ll discuss that next, in “Secure Connections
with Custom Domains” on page 69.
Google Apps can perform a redirect from the naked domain to any
desired subdomain. For example, you can set the naked domain to
redirect to www, and put the app on that subdomain.

To get started, go to the Google Apps for Work website, or if you’re part of an educa‐
tional institution, use the Google Apps for Education website.

Follow the instructions to create a Google Apps account. You must already have regis‐
tered your domain name to set up Google Apps. This process will include the oppor‐
tunity to create an “administrator” account for the domain, which is a new Google
account with an email address on the domain (your.name@example.com).

Next, add the App Engine app to the domain, as follows:

1. From the Google Admin console (the Google Apps console), sign in using the
Apps domain’s administrator account.

2. Expand the “More controls” panel at the bottom, then locate App Engine Apps
and click it. You may need to click the right arrow to find it.

3. Click “Add services to your domain,” or click the plus symbol (+).
4. Under Other Services, in the Enter App ID field, enter the project ID for your

App Engine app. Click “Add it now.” Follow the prompts to accept the terms of
service.

5. When prompted, under “Web address,” click “Add new URL,” and enter the sub‐
domain you wish to use. If you try to use the www subdomain and it complains
“Already used, please remove previous mapping first,” this is likely because Goo‐
gle Sites is configured to use www. Navigate to Google Apps, click Sites, then click
Web Address Mapping. Check the www mapping in this list, then click Delete
Mapping(s). Navigate back to App Engine Apps, select the app, then try again.

6. As instructed, in another browser window, go to your domain’s DNS service, and
create a CNAME record for the subdomain. Set the destination to ghs.google
hosted.com. Return to the Google Admin panel window, then click “I’ve comple‐
ted these steps.” Google verifies your CNAME record. It may take a few minutes
for your DNS service to update its records.

Google Apps | 65

www.it-ebooks.info

https://www.google.com/work/apps/business/
https://www.google.com/work/apps/education/
https://admin.google.com/
http://www.it-ebooks.info/

Your app can now be accessed using the custom domain, with the subdomain you
configured.

While you’re here, you should make the Apps domain’s administrator account an
owner of the app. This is required for setting up secure connections. There are three
parts to this: adding the Cloud Console as an “app” that the domain admin can use,
inviting the domain admin to be an owner of the app, and finally accepting the invita‐
tion as the domain admin. (You must add the Cloud Console as a service before the
domain admin can accept the invitation.)

To enable the Cloud Console as a service for the domain:

1. While signed in as the domain administrator, return to the Google Admin con‐
sole’s dashboard.

2. Locate and click Apps, then select Additional Google services.
3. In the list, locate Google Developers Console, then click the pop-up menu icon

on the right. Select the “On for everyone” option from the menu. Confirm that
you want domain users to be able to access the Google Developers Console.

To make the domain administrator an owner of the app:

1. Sign out of Google, then sign in with the account you used to create the App
Engine app.

2. From the Cloud Console, select the app, then click Permissions.
3. Add the Apps domain’s administrator account as a member, and set its permis‐

sion to “Is owner.”
4. Sign out of Google again, then sign in again using the Apps domain’s administra‐

tor account.
5. Go to the account’s Gmail inbox, find the invitation email, then click the link to

accept the invitation to join the project.

App Engine developer invitations do not work well with Google’s
multiple sign-in feature. If you click an invitation link, it will
attempt to accept the invitation on behalf of the first (“primary”)
account you’re using, then fail because the signed-in account is not
the intended recipient of the invitation. To perform this self-
invitation maneuver, you must sign out of Google completely then
sign in again with the invited account. Alternatively, you can use a
Chrome Incognito window to sign in with the invited account and
visit the invitation link.

66 | Chapter 3: Configuring an Application

www.it-ebooks.info

https://console.developers.google.com/
https://mail.google.com/
http://www.it-ebooks.info/

If you intend to use the Google accounts features of App Engine with accounts on
your organization’s domain, go to Cloud Console, then select Compute, App Engine,
Settings. Change the Google Authentication option to “Google Apps domain,” then
click Save. This ensures that only your domain accounts can be authorized with the
app via these features. See “Authorization with Google Accounts” on page 71 for more
information.

As you can see, Google Apps is a sophisticated service and requires many steps to set
up. With Apps on your domain, not only can you run your App Engine app on a sub‐
domain, but you get a customized instance of Google’s application suite for your
company or organization. Take a deep breath and congratulate yourself on getting
this far. Then proceed to the next section.

Configuring Secure Connections
When a client requests and retrieves a web page over an HTTP connection, every
aspect of the interaction is transmitted over the network in its final intended form,
including the URL path, request parameters, uploaded data, and the complete content
of the server’s response. For web pages, this usually means human-readable text is fly‐
ing across the wire, or through the air if the user is using a wireless connection. Any‐
one else privy to the network traffic can capture and analyze this data, and possibly
glean sensitive information about the user and the service.

Websites that deal in sensitive information, such as banks and online retailers, can
use a secure alternative for web traffic. With servers that support it, the client can
make an HTTPS connection (HTTP over the Secure Socket Layer, or SSL/TLS). All
data sent in either direction over the connection is encrypted by the sender and
decrypted by the recipient, so only the participants can understand what is being
transmitted even if the encrypted messages are intercepted. Web browsers usually
have an indicator that tells the user when a connection is secure.

App Engine supports secure connections for incoming web requests. By default, App
Engine accepts HTTPS connections for all URLs, and otherwise treats them like
HTTP requests. You can configure the frontend to reject or redirect HTTP or HTTPS
requests for some or all URL paths, such as to ensure that all requests not using a
secure connection are redirected to their HTTPS equivalents. The application code
itself doesn’t need to know the difference between a secure connection and a standard
connection: it just consumes the decrypted request and provides a response that is
encrypted by App Engine.

All URL paths can be configured to use secure connections, including those mapped
to application code and those mapped to static files. The frontend takes care of the
secure connection on behalf of the app servers and static file servers.

Configuring Secure Connections | 67

www.it-ebooks.info

http://www.it-ebooks.info/

App Engine only supports secure connections over TCP port 443, the standard port
used by browsers for https:// URLs. Similarly, App Engine only supports standard
connections over port 80. The App Engine frontend returns an error for URLs that
specify a port other than the standard port for the given connection method.

The development server does not support secure connections, and ignores the secu‐
rity settings in the configuration. You can test these URLs during development by
using the nonsecure equivalent URLs.

To configure secure connections for a URL handler in a Python application, add a
secure element to the handler’s properties in the app.yaml file:

handler:
- url: /profile/.*
 script: userprofile.py
 secure: always

The value of the secure element can be always, never, or optional:

• always says that requests to this URL path should always use a secure connec‐
tion. If a user attempts to request the URL path over a nonsecure connection, the
App Engine frontend issues an HTTP redirect code telling it to try again using a
secure HTTP connection. Browsers follow this redirect automatically.

• never says that requests to this URL path should never use a secure connection,
and requests for an HTTPS URL should be redirected to the HTTP equivalent.
Note that some browsers display a warning when a secure page is redirected to a
nonsecure page.

• optional allows either connection method for the URL path, without redirects.
The app can use the HTTPS environment variable to determine which method was
used for the request, and produce a custom response.

If you don’t specify a secure element for a URL path, the default is optional.

When configured to allow (or require) SSL, you can access the default version of your
app using the HTTPS version of the appspot.com URL:

 https://ae-book.appspot.com/

Because HTTPS uses the domain name to validate the secure connection, requests to
versioned appspot.com URLs, such as https://3.ae-book.appspot.com/, will dis‐
play a security warning in the browser saying that the domain does not match the
security certificate, which only applies to the immediate subdomains (*.app
spot.com). To prevent this, App Engine has a trick up its sleeve: replace the dots (.)
between the version and app IDs with -dot- (that’s hyphen, the word “dot,” and
another hyphen), like this:

 https://3-dot-ae-book.appspot.com/

68 | Chapter 3: Configuring an Application

www.it-ebooks.info

http://www.it-ebooks.info/

2 See HTTPS as a Ranking Signal.
3 The procedure for setting up secure connections via Google Apps is a bit convoluted. If your only interest is

to use SSL with a custom domain, check the Cloud Console and the official documentation for an easier way
in case one was added since this book was published.

4 TLS, or Transport Layer Security, refers to the latest standard, and is a successor to SSL, or Secure Socket
Layer. SSL is still sometimes used as an umbrella term for secure connections.

A request to this domain uses the certificate for *.appspot.com, and avoids the secu‐
rity warning.

Secure connections are an increasingly important part of the Web.
Even if you do not collect user data or perform sensitive transac‐
tions explicitly, secure connections protect the user transactional
data implicit when visiting web pages. They’re so important, Goo‐
gle’s search engine considers HTTPS a ranking signal when evalu‐
ating the quality of a website for appearing in search results.2

When possible, use secure: always. It’s worth it.

Secure Connections with Custom Domains
To enable secure connections over a custom domain for your app, you need to set up
Google Apps for the domain, with the app added on a subdomain and the domain
administrator account set up as an owner of the app. If you haven’t done this yet, see
“Google Apps” on page 64.3

The protocol for secure connections depends on an SSL/TLS certificate,4 a document
that says who you are and that you are responsible for traffic served from the domain.
You acquire a certificate from a certificate authority (CA). The CA may also be certi‐
fied, and this certification can be traced back to a list of known CAs built in to your
user’s web browser. Browsers will only make secure connections with websites whose
certificates can be traced back to known authorities, thereby assuring the user that the
connection to your app is genuine, and not being intercepted by a third party.

You can purchase a certificate valid for a limited time from any of a number of CAs,
much like registering a domain name from a registrar. CAs offer certificates at differ‐
ent levels of assurance, and some CAs, such as StartSSL, offer free certificates at the
lowest level. Some browsers attempt to communicate the assurance level to the user
in various ways. Be sure to follow your CA’s procedures for verifying your domain
name and adding it to the certificate, and for creating a TLS/SSL certificate for a web
server.

For example, StartSSL initially grants you an “S/MIME and Authentication” certificate
to authenticate with its website. After you have used the StartSSL website to validate

Secure Connections with Custom Domains | 69

www.it-ebooks.info

http://googlewebmastercentral.blogspot.com/2014/08/https-as-ranking-signal.html
https://www.startssl.com/
http://www.it-ebooks.info/

5 As of August 2014, this screen appears on appengine.google.com, a website we haven’t mentioned yet. This is
the old App Engine console, the one App Engine launched with in 2008. It is in the process of being replaced
by the Cloud Console. Once the last few features (such as this screen) have been moved to Cloud Console,
this old site will be decommissioned. For now, you can use either console to access any of these features.

your email address and domain name, you can generate a “Web Server TLS/SSL cer‐
tificate,” with a private key protected by a password. StartSSL then prompts you to
copy and paste the encrypted private key into a text file (ssl.key), then run the follow‐
ing command to encode it using the RSA method:

openssl rsa -in ssl.key -out ssl.key

Enter the password you used to encrypt the private key when prompted. The key is
decrypted, then encoded using RSA, suitable for uploading to Google.

The openssl command is installed on most Mac OS X and Linux
systems. Windows users can get it from the OpenSSL website.

Whatever process your CA uses, the end result should be a TLS/SSL certificate associ‐
ated with your root domain name and your app’s subdomain, as well as the unencryp‐
ted RSA-encoded private key. You will upload both of these files to Google in the next
step.

Before you can complete this process, you must decide which method App Engine
should use to serve your secure traffic. There are two choices: Server Name Indica‐
tion (SNI) or Virtual IP (VIP). SNI associates one or more certificates with your app’s
domain name. SNI is a relatively new standard, and only modern web clients (most
browsers) support it. If you need broader support for SSL-capable clients, Google also
offers a virtual IP (VIP) solution, which ties your certificate and application to an IP
address. This expensive resource comes with a monthly fee.

You are now ready to activate SSL for your domain, using the Google Apps Admin
console:

1. Open the Google Admin console. Expand “More controls” (located at the bottom
of the page), then locate and select Security. Select SSL for Custom Domains,
clicking “Show more” if necessary to reveal it.

2. In the panel that opens, enter the project ID for the app. This confirms that the
app will be responsible for SSL-related computation.

3. On the following screen,5 click Enable SSL. You are returned to the Google Apps
Admin console to complete the process. Now that SSL is enabled, you can get to

70 | Chapter 3: Configuring an Application

www.it-ebooks.info

https://www.openssl.org/
https://admin.google.com/
http://www.it-ebooks.info/

this screen at any point in the future by navigating to Security, SSL for Custom
Domains.

4. If you wish to use SNI for the certificate, click the “Increase SNI certificate slots
by 5” button. If you need the VIP solution, look for the Add a VIP button. If it is
disabled with a message prompting you to increase the budget for the app, do so
in the Cloud Console, under Compute, App Engine, Settings. The VIP option
needs a nonzero budget for its resources.

5. Still in the SSL for Custom Domains screen, click Configure SSL Certificates. In
the subsequent screen, click “Upload a new certificate.” For the “PEM encoded
X.509 certificate,” select the certificate file. For the “Unencrypted PEM encoded
RSA private key,” select the ssl.key file. Click Upload. The certificate information
appears in the window.

6. In the box that has appeared, under “Current state,” change “Serving mode” to
the method you have chosen, either SNI or VIP. An Assigned URLs section
appears. Use it to assign your subdomain to the certificate. For VIP, use your
domain’s DNS hosting to add a CNAME record with the value shown. (No DNS
change is needed for SNI only.)

7. Click “Save changes.”

That’s it! It was a long haul, but you now have full HTTPS support for your app on a
custom domain. Give it a try: visit your subdomain using the https:// method in
your browser. The browser indicates that a secure connection is successful, usually
with an icon in the address bar. In Chrome and other browsers, you can click the icon
to get more information about the certificate.

Authorization with Google Accounts
Back in Chapter 2, we discussed how an App Engine application can integrate with
Google Accounts to identify and authenticate users. We saw how an app can use
library calls to check whether the user making a request is signed in, access the user’s
email address, and calculate the sign-in and sign-out URLs of the Google Accounts
system. With this API, application code can perform fine-grained access control and
customize displays.

Another way to do access control is to leave it to the frontend. With just a little con‐
figuration, you can instruct the frontend to protect access to specific URL handlers
such that only signed-in users can request them. If a user who is not signed in
requests such a URL, the frontend redirects the user to the Google Accounts sign-in
and registration screen. Upon successfully signing in or registering a new account, the
user is redirected back to the URL.

Authorization with Google Accounts | 71

www.it-ebooks.info

http://www.it-ebooks.info/

You can also tell the frontend that only the registered developers of the application
can access certain URL handlers. This makes it easy to build administrator-only sec‐
tions of your website, with no need for code that confirms the user is an administra‐
tor. You can manage which accounts have developer status in the Cloud Console, in
the Developers section. If you revoke an account’s developer status, that user is no
longer able to access administrator-only resources, effective immediately.

Later on, we will discuss App Engine services that call your application in response to
events. For example, the scheduled tasks service (the “cron” service) can be config‐
ured to trigger a request to a URL at certain times of the day. Typically, you want to
restrict access to these URLs so not just anybody can call them. For the purposes of
access control enforced by the frontend, these services act as app administrators, so
restricting these URLs to administrators effectively locks out meddling outsiders
while allowing the services to call the app.

This coarse-grained access control is easy to set up in the frontend configuration.
And unlike access control in the application code, frontend authentication can
restrict access to static files as well as application request handlers.

You establish frontend access control for a URL handler with the login element in
app.yaml, like so:

handlers:
- url: /myaccount/.*
 script: account.py
 login: required

The login element has two possible values: required and admin.

If login is required, then the user must be signed in to access URLs for this handler.
If the user is not signed in, the frontend returns an HTTP redirect code to send the
user to the Google Accounts sign-in and registration form.

If login is admin, then the user must be signed in and must be a registered developer
for the application.

If no login is provided, the default policy is to allow anyone to access the resource,
regardless of whether the client represents a signed-in user, and regardless of whether
or not the app is set to use a members-only access policy.

You can use the login element with both script handlers and static file handlers.

Environment Variables
You can use app configuration to specify a list of environment variables to be set prior
to calling any request handlers. This is useful to control components that depend on
environment variables, without having to resort to hacks in your code to set them.

72 | Chapter 3: Configuring an Application

www.it-ebooks.info

http://www.it-ebooks.info/

To set environment variables, provide the env_variables element in app.yaml with a
mapping value:

env_variables:
 DJANGO_SETTINGS_MODULE: 'gnero.prod.settings'

Inbound Services
Some App Engine services call an application’s request handlers in response to exter‐
nal events. For example, the Mail service can call a request handler at a fixed URL
when it receives an email message at an email address associated with the app. This is
a common design theme in App Engine: all application code is in the form of request
handlers, and services that need the app to respond to an event invoke request han‐
dlers to do it.

Each service capable of creating inbound traffic must be enabled in app configura‐
tion, to confirm that the app is expecting traffic from those services on the corre‐
sponding URL paths. To enable these services, provide the inbound_services
element in app.yaml with a list of service names:

inbound_services:
- mail
- warmup

Table 3-1 lists the services that can be enabled this way, and where to find more infor‐
mation about each service.

Inbound Services | 73

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3-1. Services that create inbound traffic for an app, which must be enabled in service
configuration

Service Description Name Handler URLs

Channel
Presence

Receive channel connection notifications channel_pres

ence

/_ah/channel/.*

Mail Receive email at a set of addresses; see
Chapter 14

mail /_ah/mail/.*

XMPP Messages Receive XMPP chat messages; for all XMPP
services, see Chapter 15

xmpp_message /_ah/xmpp/message/chat/

XMPP Presence Receive XMPP presence notifications xmpp_presence /_ah/xmpp/presence/.*

XMPP Subscribe Receive XMPP subscription notifications xmpp_sub

scribe

/_ah/xmpp/subscription/.*

XMPP Error Receive XMPP error messages xmpp_error /_ah/xmpp/error/

Warmup
Requests

Initialize an instance, with warmup
requests enabled; see “Warmup Requests”
on page 98

warmup /_ah/warmup

Custom Error Responses
When your application serves a status code that represents an error (such as 403 For‐
bidden or 500 Internal Server Error) in a response to a browser, it can also include an
HTML page in the body of the response. The browser typically shows this HTML to
the user if the browser expected to render a full page for the request. Serving an error
page can help prevent the user from being disoriented by a generic error message—or
no message at all.

There are cases when an error condition occurs before App Engine can invoke your
application code, and must return an error response. For example, if none of the
request handler mappings in the app’s configuration match the request URL, App
Engine has no request handler to call and must return a 404 Not Found message. By
default, App Engine adds its own generic HTML page to its error responses.

You can configure custom error content to be used instead of App Engine’s error
page. You provide the response body in a file included with your app, and mention
the file in your application configuration.

To set error pages, add an error_handlers element to your app.yaml. Its value is a list
of mappings, one per error file:

74 | Chapter 3: Configuring an Application

www.it-ebooks.info

http://www.it-ebooks.info/

error_handlers:
- file: error.html
- error_code: over_quota
 file: busy_error.html
- error_code: dos_api_denial
 file: dos_denial.txt
 mime_type: text/plain

The file value specifies the path from the application root directory to the error file.
The optional mime_type specifies the MIME content type for the file, which defaults
to text/html.

The error_code value associates the error file with a specific error condition. If omit‐
ted, the file is associated with every error condition that doesn’t have a specific error
file of its own. Error codes include the following:

over_quota

The request cannot be fulfilled because the app has temporarily exceeded a
resource quota or limit.

dos_api_denial

The origin of the request is blocked by the app’s denial-of-service protection con‐
figuration. (See the App Engine documentation for more information about this
feature.)

timeout

The request handler did not return a response before the request deadline.

Custom error files must be stored on application servers. They
must not be static files. Be careful not to configure static file han‐
dlers that match these files.

Python Libraries
On your own computer, Python programs run in an environment with access to
many libraries of modules. Some of these modules—quite a few, actually—come with
Python itself, in the Python standard library. Others you may have installed sepa‐
rately, such as with pip install or easy_install. Perhaps you use virtualenv to
create multiple isolated Python environments, each with its own set of available libra‐
ries. A Python program can import any module within its environment, and a mod‐
ule must be available in this environment (or elsewhere on the Python library load
path) to be importable.

On App Engine, a Python app also runs in an environment with access to libraries.
This environment includes a slightly modified version of the Python 2.7 standard

Python Libraries | 75

www.it-ebooks.info

http://www.it-ebooks.info/

library. (The modifications account for restrictions of the App Engine runtime envi‐
ronment, which we’ll discuss in Chapter 4.) App Engine adds to this the libraries and
tools included with the App Engine SDK, such as APIs for accessing the services
(such as google.appengine.api.urlfetch), and utilities such as the data modeling
libraries (google.appengine.ext.ndb).

Naturally, the environment also includes any Python modules you provide in your
application directory. In addition to your own code, you might add a copy of a third-
party library your app uses to your app directory, where it is uploaded as part of your
app. Note that this method only works for “pure Python” libraries, and not libraries
that have portions written in C.

For convenience, the Python runtime environment includes several third-party libra‐
ries popular for web development. We’ve already seen Jinja, the templating library.
The Django web application framework is also included. You can use NumPy for data
processing and numerical analysis. The Python Cryptography Toolkit (PyCrypto)
provides strong encryption capabilities.

To use one of the provided third-party libraries, you must declare it in the app.yaml
file for the app, like so:

libraries:
- name: django
 version: "1.3"

This declaration is necessary to select the version of the library your app will use.
When a new version of a third-party library becomes available, your app will con‐
tinue to use the declared version until you change it. You’ll want to test your app to
make sure it’s compatible with the new version before making the switch with your
live app. With this declaration in place, import django will load the requested ver‐
sion of the library. (Without it, the import will fail with an ImportError.)

For more information about using Django with App Engine, see
Chapter 18.

You can specify a version of latest to always request the latest major version of the
library. This may be desired for small libraries, where new versions are typically back‐
ward compatible. For larger packages like Django, you almost certainly want to select
a specific version, and upgrade carefully when a new version is added:

libraries:
- name: jinja2
 version: latest

76 | Chapter 3: Configuring an Application

www.it-ebooks.info

http://www.it-ebooks.info/

- name: markupsafe
 version: latest

While the App Engine runtime environment provides these libraries, the Python SDK
does not. You must install third-party libraries in your local Python environment
yourself, and make sure your version matches the one requested in your app.yaml.
Installation instructions are specific to each library.

Table 3-2 lists third-party libraries available as of SDK version 1.9.18. Check the offi‐
cial documentation for an up-to-date list.

Table 3-2. Third-party Python libraries available by request in the runtime environment

Library Description Name Versions

Django A web application framework; see the Django website for
installation instructions

django 1.5, 1.4, 1.3,
1.2

Endpoints The Google Endpoints library endpoints 1.0

Jinja2 A templating library; MarkupSafe is recommended with Jinja2; to
install, use: sudo easy_install jinja2

jinja2 2.6

lxml An XML parsing and production toolkit; see the lxml website for
installation instructions, including the libxml2 and libxslt
libraries

lxml 2.3.5, 2.3

MarkupSafe Fast HTML-aware string handler; to install, use: sudo
easy_install markupsafe

markupsafe 0.15

matplotlib A 2D mathematical plotting package matplotlib 1.2.0

MySQLdb A common interface to MySQL databases, useful with Google Cloud
SQL; see Chapter 11

MySQLdb 1.2.4b4

NumPy Data processing and numerical analysis; see the SciPy website for
installation

numpy 1.6.1

Python Imaging
Library (PIL)

Image manipulation toolkit; see the PIL website for installation pil 1.1.7

protorpc An efficient remote procedure call bundling format, used by Google protorpc 1.0

PyAMF For manipulating Action Message Format (AMF) messages, used for
server messaging from Adobe Flash Player

PyAMF 0.6.1

Python Libraries | 77

www.it-ebooks.info

https://www.djangoproject.com/
http://lxml.de/
http://www.scipy.org/
http://www.pythonware.com/products/pil/index.htm
http://www.it-ebooks.info/

Library Description Name Versions

Python
Cryptography
Toolkit
(PyCrypto)

Cryptographic routines; see the PyCrypto website for installation;
export restrictions may apply

pycrypto 2.6, 2.3

setuptools For discovering which packages are installed (you don’t use this for
installing packages)

setuptools 0.6c11

webapp2 The webapp2 web application framework webapp2 2.5.2, 2.5.1,
2.3

(deprecated)

WebOb An object-oriented interface to HTTP requests and responses; used
by (and included automatically with) the webapp framework;
included in the SDK

webob 1.1.1

YAML Library for parsing the YAML message serialization format; used by
the SDK for the config files; included in the SDK

yaml 3.10

Built-in Handlers
Some of the utilities included with the Python runtime environment use their own
request handlers to provide functionality, such as a web-based administrative UI or
web service endpoints. Typically, these handlers map to URLs with paths beginning
with /_ah/, which are reserved for App Engine use. Because this code runs within
your application, you must enable this functionality by setting up these request han‐
dlers.

To make it easy to do (and difficult to do incorrectly), many of these tools are avail‐
able as “built-ins.” You enable a built-in feature by naming it in your app.yaml file, in
a mapping named builtins:

builtins:
- appstats: on
- remote_api: on

Table 3-3 lists the built-ins available as of SDK version 1.9.18. As usual, check the
official documentation for an up-to-date list.

78 | Chapter 3: Configuring an Application

www.it-ebooks.info

https://www.dlitz.net/software/pycrypto/
http://www.it-ebooks.info/

Table 3-3. Built-in features that must be enabled using the built-ins directive in app.yaml

Feature Description Name

AppStats Sets up the AppStats control panel at /_ah/stats; see “Visualizing Calls with AppStats”
on page 375

appstats

Deferred work Sets up the task queue handler for the deferred library; see “Deferring Work” on page
356

deferred

Remote API Establishes the web service endpoint for remote API access; see “Remote Controls” on page
253

remote_api

Includes
An app.yaml file can get rather large, especially if you use it to route your app’s URLs
to multiple handlers. You can organize your app’s configuration into separate compo‐
nent files by using the includes directive. This also makes it easy to write App
Engine components that can be installed in other apps, regardless of which frame‐
works the apps are using.

The includes value is a list of file or directory paths, like so:

includes:
- lib/component/ae_config.yaml

The path can be an absolute path, a path relative to the app root directory, or a path
relative to the file that contains the includes. If the path is to a file, the file is parsed
as a YAML file. If the path is to a directory, the filename is assumed to be include.yaml
in the given directory.

An included file can contain builtins, includes, handlers, and admin_console val‐
ues. These list values are prepended to the list that appears in the current file.

For handlers, this means that handler URL patterns from includes are tested before
those in the current file. If your main app.yaml file has a handler mapped to the URL
pattern /.*, handlers from includes will be tested first, and only those that don’t
match will fall to the catch-all handler. Notice that if an included file maps a handler
to /.*, none of the handlers in the current file (or any file that includes the current
file) will ever match a request! So don’t do that.

Includes | 79

www.it-ebooks.info

http://www.it-ebooks.info/

Includes are aggregated in the order they appear in the list. For example, consider this
app.yaml:

handlers:
- url: /.*
 script: main.app

includes:
- lib/component_one
- lib/component_two

Here, a request URL will try to match each of the handlers in lib/component_one/
include.yaml in the order they appear in that file, followed by each of the handlers in
lib/component_two/include.yaml, followed by the /.* handler in app.yaml.

80 | Chapter 3: Configuring an Application

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Request Handlers and Instances

When a request arrives intended for your application code, the App Engine frontend
routes it to the application servers. If an instance of your app is running and available
to receive a user request, App Engine sends the request to the instance, and the
instance invokes the request handler that corresponds with the URL of the request. If
none of the running instances of the app are available, App Engine starts up a new
one automatically. App Engine will also shut down instances it no longer needs.

The instance is your app’s unit of computing power. It provides memory and a pro‐
cessor, isolated from other instances for both data security and performance. Your
application’s code and data stay in the instance’s memory until the instance is shut
down, providing an opportunity for local storage that persists between requests.

Within the instance, your application code runs in a runtime environment. The envi‐
ronment includes the language interpreter, libraries, and other environment features
you selected in your app’s configuration. Your app can also access a read-only filesys‐
tem containing its files (those that you did not send exclusively to the static file
servers). The environment manages all the inputs and outputs for the request han‐
dler, setting up the request at the beginning, recording log messages during, and col‐
lecting the response at the end.

If you have multithreading enabled, an instance can handle multiple requests concur‐
rently, with all request handlers sharing the same environment. With multithreading
disabled, each instance handles one request at a time. Multithreading is one of the
best ways to utilize the resources of your instances and keep your costs low. But it’s up
to you to make sure your request handler code runs correctly when handling multiple
requests concurrently.

The runtime environment and the instance are abstractions. They rest above, and
take the place of, the operating system and the hardware. It is these abstractions that

81

www.it-ebooks.info

http://www.it-ebooks.info/

allow your app to scale seamlessly and automatically on App Engine’s infrastructure.
At no point must you write code to start or stop instances, load balance requests, or
monitor resource utilization. This is provided for you.

In fact, you could almost ignore instances entirely and just focus on request handlers:
a request comes in, a request handler comes to life, a response goes out. During its
brief lifetime, the request handler makes a few decisions and calls a few services, and
leaves no mark behind. The instance only comes into play to give you more control
over efficiency: local memory caching, multithreading, and warmup initialization.
You can also configure the hardware profile and parameters of instance allocation,
which involve trade-offs of performance and cost.

In this chapter, we discuss the features of the runtime environments and instances.
We introduce a way of thinking about request handlers, and how they fit into the
larger notion of instances and the App Engine architecture. We also cover how to
tune your instances for performance and resource utilization.

We’ll focus this discussion on App Engine’s automatic scaling features for the user-
facing parts of an application. In the next chapter, we’ll branch out into modules and
other scaling patterns, and see how to use instances in various ways to build more
complex application architecture.

The Runtime Environment
All code execution occurs in the runtime environment you have selected for your app.
There are four major runtime environments: Java, Python 2.7, PHP, and Go. For this
version of the book, we’re focusing on the Python 2.7 environment.

The runtime environment manages all the interaction between the application code
and the rest of App Engine. To invoke an application to handle a request, App Engine
prepares the runtime environment with the request data, calls the appropriate request
handler code within the environment, then collects and returns the response. The
application code uses features of the environment to read inputs, call services, and
calculate the response data.

The environment isolates and protects your app to guarantee consistent performance.
Regardless of what else is happening on the physical hardware that’s running the
instance, your app sees consistent performance as if it is running on a server all by
itself. To do this, the environment must restrict the capabilities normally provided
by a traditional server operating system, such as the ability to write to the local file‐
system.

An environment like this is called a “sandbox”: what’s yours is yours, and no other
app can intrude. This sandbox effect also applies to your code and your data. If a

82 | Chapter 4: Request Handlers and Instances

www.it-ebooks.info

http://www.it-ebooks.info/

piece of physical hardware happens to be running instances for two different applica‐
tions, the applications cannot read each other’s code, files, or network traffic.

App Engine’s services are similarly partitioned on an app-by-app basis, so each app
sees an isolated view of the service and its data. The runtime environment includes
APIs for calling these services in the form of language-specific libraries. In a few
cases, portions of standard libraries have been replaced with implementations that
make service calls.

The Sandbox
The runtime environment does not expose the complete operating system to the
application. Some functions, such as the ability to create arbitrary network connec‐
tions, are restricted. This “sandbox” is necessary to prevent other applications run‐
ning on the same server from interfering with your application (and vice versa).
Instead, an app can perform some of these functions using App Engine’s scalable
services, such as the URL Fetch service.

The most notable sandbox restrictions include the following:

• An app cannot spawn additional processes. All processing for a request must be
performed by the request handler’s process. Multiple threads within the process
are allowed, but when the main thread has returned a response, all remaining
threads are terminated. There is a way to create long-lived background threads
using modules and manual scaling, but this is an exception. You’ll most likely use
automatic scaling for handling user traffic, and this is the default.

• An app cannot make arbitrary network connections. Networking features are
provided by the App Engine services, such as URL Fetch and Mail.

• The app does not manipulate the socket connection with the client directly.
Instead, the app prepares the response data, then exits. App Engine takes care of
returning the response. This isolates apps from the network infrastructre, at the
expense of preventing some niceties like streaming partial results data.

• An app can only read from the filesystem, and can only read its own code and
resource files. It cannot create or modify files. Instead of files, an app can use the
datastore to save data.

• An app cannot see or otherwise know about other applications or processes that
may be running on the server. This includes other request handlers from the
same application that may be running simultaneously.

• An app cannot read another app’s data from any service that stores data. More
generally, an app cannot pretend to be another app when calling a service, and all
services partition data between apps.

The Runtime Environment | 83

www.it-ebooks.info

http://www.it-ebooks.info/

These restrictions are implemented on multiple levels, both to ensure that the restric‐
tions are enforced and to make it easier to troubleshoot problems that may be related
to the sandbox. For example, some standard library calls have been replaced with
behaviors more appropriate to the sandbox.

Quotas and Limits
The sandboxed runtime environment monitors the system resources used by the
application and limits how much the app can consume. For the resources you pay for,
such as running time and storage, you can lift these limits by allocating a daily
resource budget in the Cloud Console. App Engine also enforces several system-wide
limits that protect the integrity of the servers and their ability to serve multiple apps.

In App Engine parlance, “quotas” are resource limits that refresh at the beginning of
each calendar day (at midnight, Pacific Time). You can monitor your application’s
daily consumption of quotas using the Cloud Console, in the Quota Details section.

Because Google may change how the limits are set as the system is tuned for perfor‐
mance, we won’t state some of the specific values of these limits in this book. You can
find the actual values of these limits in the official App Engine documentation. Goo‐
gle has said it will give 90 days’ notice before changing limits in a way that would
affect existing apps.

Request limits
Several system-wide limits specify how requests can behave. These include the size
and number of requests over a period of time, and the bandwidth consumed by
inbound and outbound network traffic.

One important request limit is the request timer. An application has 60 seconds to
respond to a user request.

Near the end of the 60-second limit, the server raises an exception that the applica‐
tion can catch for the purposes of exiting cleanly or returning a user-friendly
error message. In Python, the request timer raises a google.appengine.run
time.DeadlineExceededError.

If the request handler has not returned a response or otherwise exited after 60 sec‐
onds, the server terminates the process and returns a generic system error (HTTP
code 500) to the client.

The 60-second limit applies to user web requests, as well as requests for web hooks
such as incoming XMPP and email requests. A request handler invoked by a task
queue or scheduled task can run for up to 10 minutes in duration. Tasks are a conve‐
nient and powerful tool for performing large amounts of work in the background.
We’ll discuss tasks in Chapter 16.

84 | Chapter 4: Request Handlers and Instances

www.it-ebooks.info

http://www.it-ebooks.info/

The size of a request is limited to 32 megabytes, as is the size of the request handler’s
response.

Service limits
Each App Engine service has its own set of quotas and limits. As with system-wide
limits, some can be raised using a billing account and a budget, such as the number of
recipients the application has sent emails to. Other limits are there to protect the
integrity of the service, such as the maximum size of a response to the URL Fetch ser‐
vice.

In Python, when an app exceeds a service-specific limit or quota, the
runtime environment raises a apiproxy_errors.OverQuotaError (from the
google.appengine.api.runtime package).

With a few notable exceptions, the size of a service call and the size of the service
response are each limited to 1 megabyte. This imposes an inherent limit on the size of
datastore entities and memcache values. Although an incoming user request can con‐
tain up to 32 megabytes, only 1 megabyte of that data can be stored using a single
datastore entity or memcache value.

The datastore has a “batch” API that allows you to store or fetch multiple data objects
in a single service call. The total size of a batch request to the datastore is unlimited:
you can attempt to store or fetch as many entities as can be processed within an inter‐
nal timing limit for datastore service calls. Each entity is still limited to 1 megabyte in
size.

The memcache also has a batch API. The total size of the request of a batch call to the
memcache, or its response, can be up to 32 megabytes. As with the datastore, each
memcache value cannot exceed 1 megabyte in size.

The URL Fetch service, which your app can use to connect to remote hosts using
HTTP, can issue requests up to 10 megabytes, and receive responses up to 32 mega‐
bytes.

We won’t list all the service limits here. Google raises limits as improvements are
made to the infrastructure, and numbers printed here may be outdated. See the offi‐
cial documentation for a complete list, including the latest values.

Deployment limits
Two limits affect the size and structure of your application’s files. A single application
file cannot be larger than 32 megabytes. This applies to resource files (code, configu‐
ration) as well as static files. Also, the total number of files for an application cannot
be larger than 10,000, including resource files and static files. The total size of all files
must not exceed 150 megabytes.

The Runtime Environment | 85

www.it-ebooks.info

http://www.it-ebooks.info/

These limits aren’t likely to cause problems in most cases, but some common tasks
can approach these numbers. Some third-party libraries or frameworks can be many
hundreds of files. Sites consisting of many pages of text or images (not otherwise
stored in the datastore) can reach the file count limit. A site offering video or software
for download might have difficulty with the 32-megabyte limit.

The Python runtime offers two ways to mitigate the application file count limit. If you
have many files of Python code, you can store the code files in a ZIP archive file, then
add the path to the ZIP archive to sys.path at the top of your request handler scripts.
The request handler scripts themselves must not be in a ZIP archive. Thanks to a
built-in Python feature called zipimport, the Python interpreter recognizes the ZIP
file automatically and unpacks it as needed when importing modules. Unpacking
takes additional CPU time, but because imports are cached, the app only incurs this
cost the first time the module is imported in a given app instance:

import sys
sys.path.insert(1, 'locales.zip')

import locales.es

The Python App Engine runtime includes a similar mechanism for serving static files
from a ZIP archive file, called zipserve. Unlike zipimport, this feature is specific to
App Engine. To serve static files from a ZIP archive, add the zipserve request
handler to your app.yaml, associated with a URL path that represents the path to the
ZIP file:

- url: /static/images/.*
 script: $PYTHON_LIB/google/appengine/ext/zipserve

This declares that all requests for a URL starting with /static/images/ should
resolve to a path in the ZIP file /static/images.zip.

The string $PYTHON_LIB in the script path refers to the location of the App Engine
libraries, and is the only such substitution available. It’s useful precisely for this pur‐
pose, to set up a request handler whose code is in the App Engine Python modules
included with the runtime environment. (zipserve is not a configurable built-in
because it needs you to specify the URL mapping.)

When using zipserve, keep in mind that the ZIP archive is uploaded as a resource
file, not a static file. Files are served by application code, not the static file infrastruc‐
ture. By default, the handler advises browsers to cache the files for 20 minutes. You
can customize the handler’s cache duration using the wrapper WSGIApplication. See
the source code for google/appengine/ext/zipserve/__init__.py in the SDK for details.

An application can only be uploaded a limited number of times per day, currently
1,000. You may not notice this limit during normal application development. If you

86 | Chapter 4: Request Handlers and Instances

www.it-ebooks.info

http://www.it-ebooks.info/

are using app deployments to upload data to the application on a regular schedule,
you may want to keep this limit in mind.

Projects
Each Google account can own or be a member of up to 25 Cloud projects. A Cloud
project has exactly one App Engine “app,” so you can think of this as being a devel‐
oper of up to 25 apps. A project includes all of the Cloud resources for a major appli‐
cation, and there isn’t much reason to use more than one project toward a single
purpose. Features such as App Engine modules (discussed in Chapter 5) and
Compute Engine give each project a tremendous amount of flexibility in its architec‐
ture and scope. Most services and features that can be used for multiple purposes
within a single app have ways of segmenting their data within the app and within the
Cloud Console. (For example, you can look at logs for each module and version indi‐
vidually.)

That said, having multiple projects for different purposes is often useful just to keep
things organized. Each project has its own billing configuration and list of contribu‐
tors. A single company that produces multiple web products might have one project
per product.

If 25 projects per account is a burden in your case, Google offers more apps with their
paid support programs.

Versions
When you deploy your app, it is uploaded as a version of your app. The version ID is
set either in your app.yaml file or as a command-line argument when you deploy. If
you deploy an app using the same version ID as a previous deployment, the version is
replaced. Otherwise, a new version is created.

All traffic to your live app (on your custom domain or your primary appspot.com
domain) goes to the default version. You can change which version is the default ver‐
sion using the Cloud Console, or with another command-line invocation. Nondefault
versions are accessible on separate appspot.com domains. This makes versions a val‐
uable part of your deployment workflow: you can deploy a release candidate to a
nondefault version ID, test it, then switch the default version to make the upgrade.
See Chapter 20 for more details.

With billing enabled, each app can have up to 60 versions at one time. (The limit is 15
if billing is not enabled.) You can delete unused versions from the Cloud Console.

Billable quotas
Every application gets a limited amount of computing resources for free, so you can
start developing and testing your application right away. You can purchase additional

The Runtime Environment | 87

www.it-ebooks.info

https://cloud.google.com/support/
http://www.it-ebooks.info/

1 Cloud Datastore was originally a feature exclusive to App Engine, and is now a standalone service with a
REST API as well as its original App Engine integration. As of September 2014, Datastore billing is still man‐
aged by App Engine’s quota system, but this may change in the future.

computing resources at competitive rates. You only pay for what you actually use, and
you specify the maximum amount of money you want to spend.

You can create an app by using the free limits without setting up a billing account.
Free apps never incur charges, but are constrained by the free quotas.

When you are ready for your app to accept live traffic or otherwise exceed the free
quotas, you enable billing for the app, and set a resource budget. Apps with billing
enabled get higher free quotas automatically, and you can keep the resource budget at
zero dollars to prevent the app from incurring charges. If you’re in a position to asso‐
ciate a credit card with your account, you can claim these extra free resources just by
enabling billing.

To enable billing, sign in to the Cloud Console with the developer account that is to
be the billing account. Select Billing Settings from the sidebar. Click the Enable Bill‐
ing button, and follow the prompts to enter your payment information. This billing
account applies to all Cloud services you use with the project, including App Engine.

When you are ready to grow beyond the free resource limits, you set a maximum
daily resource budget for the app. This limit applies to App Engine resources specifi‐
cally, such as App Engine–managed computation. For now, it also applies to the
Cloud Datastore.1 The budget specifies the amount of money App Engine can
“spend” on resources, at the posted rates, over the course of a day. This budget is in
addition to the free quotas: the budget is not consumed until after a resource has
exceeded its free quota. After the budget for the calendar day is exhausted, service
calls that would require more resources raise an exception. If there are not enough
resources remaining to invoke a request handler, App Engine will respond to requests
with a generic error message. The budget resets at the beginning of each calendar day
(Pacific Time).

To set the budget, visit the Console while signed in with the billing account. Select
Compute from the sidebar, then App Engine, then Settings. Adjust the “Daily budget”
setting, then click Save. A change to your budget takes about 10 minutes to complete,
and you will not be able to change the setting again during those 10 minutes.
Figure 4-1 shows the Settings panel with a daily budget being set.

88 | Chapter 4: Request Handlers and Instances

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-1. Setting a daily budget in the app’s Settings panel

The Runtime Environment | 89

www.it-ebooks.info

http://www.it-ebooks.info/

It’s worth repeating: you are only charged for the resources your
app uses. If you set a high daily resource budget and App Engine
only uses a portion of it, you are only charged for that portion.
Typically, you would test your app to estimate resource consump‐
tion, then set the budget generously so every day comes in under
the budget. The budget maximum is there to prevent unexpected
surges in resource usage from draining your bank account—a
monetary surge protector, if you will. If you’re expecting a spike in
traffic (such as for a product launch), you may want to raise your
budget in advance of the event.

The official documentation includes a complete list of the free quota limits, the
increased free quota limits with billing enabled, the maximum allocation amounts,
and the latest billing rates. You can view the app’s current quota consumption by navi‐
gating to Compute, App Engine, “Quota details” in the Console.

The Python Runtime Environment
When an app instance receives a request intended for a Python application, it com‐
pares the URL path of the request to the URL patterns in the app’s app.yaml file. As
we saw in “Configuring a Python App” on page 52, each URL pattern is associated
with either the Python import path for a WSGI application instance, or a file of
Python code (a “script”). The first pattern to match the path identifies the code that
will handle the request.

If the handler is a WSGI instance, the runtime environment prepares the request and
invokes the handler according to the WSGI standard. The handler returns the
response in kind.

If the handler is a file of Python code, the runtime environment uses the Common
Gateway Interface (CGI) standard to exchange request and response data with the
code. The CGI standard uses a combination of environment variables and the appli‐
cation process’s input and output streams to handle this communication.

You’re unlikely to write code that uses the WSGI and CGI interfaces directly. Instead,
you’re better off using an established web application framework. Python developers
have many web frameworks to choose from. Django, Pyramid (of the Pylons Project),
Flask, and web2py are several “full-stack” frameworks that work well with App
Engine. For convenience, App Engine includes Django as part of the runtime envi‐
ronment. You can include other frameworks and libraries with your application sim‐
ply by adding them to your application directory. As we saw in Chapter 2, App
Engine also includes a simple framework of its own, called webapp2.

90 | Chapter 4: Request Handlers and Instances

www.it-ebooks.info

http://www.it-ebooks.info/

By the time an app instance receives the request, it has already fired up the Python
interpreter, ready to handle requests. If the instance has served a request for the appli‐
cation since it was initialized, it may have the application in memory as well, but if it
hasn’t, it imports the appropriate Python module for the request. The instance
invokes the handler code with the data for the request, and returns the handler’s
response to the client.

When you run a Python program loaded from a .py file on your computer, the
Python interpreter compiles the Python code to a compact bytecode format, which
you might see on your computer as a .pyc file. If you edit your .py source, the inter‐
preter will recompile it the next time it needs it. Because application code does not
change after you’ve uploaded your app, App Engine precompiles all Python code to
bytecode one time when you upload the app. This saves time when a module or script
is imported for the first time in each instance of the app.

The Python interpreter remains in the instance memory for the lifetime of the
instance. The interpreter loads your code according to Python’s module import
semantics. Typically, this means that once a module is imported for the first time on
an instance, subsequent attempts to import it do nothing, as the module is already
loaded. This is true across multiple requests handled by the same instance.

The Python 2.7 runtime environment uses a modified version of the official Python
2.7 interpreter, sometimes referred to as “CPython” to distinguish it from other
Python interpreters. The application code must run entirely within the Python inter‐
preter. That is, the code must be purely Python code, and cannot include or depend
upon extensions to the interpreter. Python modules that include extensions written in
C cannot be uploaded with your app or otherwise added to the runtime environment.
The “pure Python” requirement can be problematic for some third-party libraries, so
be sure that libraries you want to use operate without extensions.

A few popular Python libraries, including some that depend on C code, are available
within the runtime environment. Refer back to “Python Libraries” on page 75 for
more information.

App Engine sets the following environment variables at the beginning of each
request, which you can access using os.environ:

APPLICATION_ID

The ID of the application. The ID is preceded by s~ when running on App
Engine, and dev~ when running in a development server.

CURRENT_VERSION_ID

The ID of the version of the app serving this request.

The Runtime Environment | 91

www.it-ebooks.info

http://www.it-ebooks.info/

AUTH_DOMAIN

This is set to gmail.com if the user is signed in using a Google Account, or the
domain of the app if signed in with a Google Apps account; not set otherwise.

SERVER_SOFTWARE

The version of the runtime environment; starts with the word Development when
running on the development server. For example:

import os

...
 if os.environ['SERVER_SOFTWARE'].startswith('Development'):
 # ... only executed in the development server ...

The Python interpreter prevents the app from accessing illegal system resources at a
low level. Because a Python app can consist only of Python code, an app must per‐
form all processing within the Python interpreter.

For convenience, portions of the Python standard library whose only use is to access
restricted system resources have been disabled. If you attempt to import a disabled
module or call a disabled function, the interpreter raises an ImportError. The Python
development server enforces the standard module import restrictions, so you can test
imports on your computer.

Some standard library modules have been replaced with alternative versions for
speed or compatibility. Other modules have custom implementations, such as
zipimport.

The Request Handler Abstraction
Let’s review what we know so far about request handlers. A request handler is an
entry point into the application code, mapped to a URL pattern in the application
configuration. Here is a section of configuration for a request handler which would
appear in the app.yaml file:

handlers:
- url: /profile/.*
 script: users.profile.app

A source file named users/profile.py contains a WSGI application instance in a vari‐
able named app. This code knows how to invoke the webapp2 framework to handle
the request, which in turn calls our code:

import jinja2
import os
import webapp2

from google.appengine.api import users
from google.appengine.ext import ndb

92 | Chapter 4: Request Handlers and Instances

www.it-ebooks.info

http://www.it-ebooks.info/

class UserProfile(ndb.Model):
 user = ndb.UserProperty()

template_env = jinja2.Environment(
 loader=jinja2.FileSystemLoader(os.path.dirname(__file__)))

class ProfileHandler(webapp2.RequestHandler):
 def get(self):
 # Call the Users service to identify the user making the request,
 # if the user is signed in.
 current_user = users.get_current_user()

 # Call the Datastore service to retrieve the user's profile data.
 profile = None
 if current_user:
 profile = UserProfile.query().filter(
 UserProfile.user == current_user).fetch(1)

 # Render a response page using a template.
 template = template_env.get_template('profile.html')
 self.response.out.write(template.render({'profile': profile}))

app = webapp2.WSGIApplication([('/profile/?', ProfileHandler)], debug=True)

When a user visits the URL path /profile/ on this application’s domain, App Engine
matches the request to users.profile.app via the application configuration, and
then invokes it to produce the response. The WSGIApplication creates an object of
the ProfileHandler class with the request data, then calls its get() method. The
method code makes use of two App Engine services, the Users service and the Data‐
store service, to access resources outside of the app code. It uses that data to make a
web page, then exits.

In theory, the application process only needs to exist long enough to handle the
request. When the request arrives, App Engine figures out which request handler it
needs, makes room for it in its computation infrastructure, and creates it in a runtime
environment. Once the request handler has created the response, the show is over,
and App Engine is free to purge the request handler from memory. If the application
needs data to live on between requests, it stores it by using a service like the datastore.
The application itself does not live long enough to remember anything on its own.

Figure 4-2 illustrates this abstract life cycle of a request handler.

The Request Handler Abstraction | 93

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-2. Request handlers in the abstract: (1) a request arrives; (2) a request handler
is created; (3) the request handler calls services and computes the response; (4) the
request handler terminates, the response is returned

On App Engine, a web application can handle many requests simultaneously. There
could be many request handlers active at any given moment, in any stage of its life
cycle. As shown in Figure 4-3, all these request handlers access the same services.

Each service has its own specification for managing concurrent access from multiple
request handlers, and for the most part, a request handler doesn’t have to think about
the fact that other request handlers are in play. The big exception here is datastore
transactions, which we’ll discuss in detail in Chapter 8.

The request handler abstraction is useful for thinking about how to design your app,
and how the service-oriented architecture is justified. App Engine can create an arbi‐
trary number of request handlers to handle an arbitrary number of requests simulta‐
neously, and your code barely has to know anything about it. This is how your app
scales with traffic automatically.

94 | Chapter 4: Request Handlers and Instances

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-3. A web application handles many requests simultaneously; all request han‐
dlers access the same services

Introducing Instances
The idea of a web application being a big pot of bubbling request handlers is satisfy‐
ing, but in practice, this abstraction fails to capture an important aspect of real-world
system software. Starting a program for the first time on a fresh system can be expen‐
sive: code is read into RAM from disk, memory is allocated, data structures are set up
with starting values, and configuration files are read and parsed. App Engine initial‐
izes new runtime environments prior to using them to execute request handlers, so
the environment initialization cost is not incurred during the handler execution. But
application code often needs to perform its own initialization that App Engine can’t
do on its own ahead of time. The Python interpreter is designed to exploit local mem‐
ory, and many web application frameworks perform initialization, expecting the
investment to pay off over multiple requests. It’s wasteful and impractical to do this at
the beginning of every request handler, while the user is waiting.

App Engine solves this problem with instances, long-lived containers for request han‐
dlers that retain local memory. At any given moment, an application has a pool of
zero or more instances allocated for handling requests. App Engine routes new
requests to available instances. It creates new instances as needed, and shuts down
instances that are excessively idle. When a request arrives at an instance that has

Introducing Instances | 95

www.it-ebooks.info

http://www.it-ebooks.info/

already handled previous requests, the instance is likely to have already done the nec‐
essary preparatory work, and can serve the response more quickly than a fresh
instance.

The picture now looks something like Figure 4-4. The request handler still only lives
as long as it takes to return the response, but its actions can now affect instance mem‐
ory. This instance memory remains available to the next request handler that exe‐
cutes inside the instance.

Figure 4-4. An instance handles a request, while another instance sits idle

Keep in mind that instances are created and destroyed dynamically, and requests are
routed to instances based purely on availability. While instances are meant to live
longer than request handlers, they are as ephemeral as request handlers, and any
given request may be handled by a new instance. There is no guarantee that requests
of a particular sort will always be handled by the same instance, nor is it assured that
an instance will still be around after a given request is handled. Outside of a request
handler, the application is not given the opportunity to rescue data from local mem‐
ory prior to an instance being shut down. If you need to store user-specific informa‐
tion (such as session data), you must use a storage service. Instance memory is only
suitable for local caching.

Instances can provide another crucial performance benefit: multithreading. With
multithreading enabled in your application configuration, an instance will start addi‐
tional request handlers in separate threads as local resources allow, and execute them
concurrently. All threads share the same instance memory just like any other multi‐
threaded application—which means your code must take care to protect shared
memory during critical sections of code. You can use Python’s language and library
features for synchronizing access to shared memory (such as the Queue module).

96 | Chapter 4: Request Handlers and Instances

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-5 illustrates an instance with multithreading enabled. Refer to “Multithread‐
ing” on page 55 for information on how to enable or disable multithreading in appli‐
cation configuration.

Figure 4-5. A multithreaded instance handles multiple requests concurrently

Instance uptime is App Engine’s billable unit for computation, measured in fractions
of an instance hour. This makes multithreading an important technique for maximiz‐
ing throughput and minimizing costs. Most request handlers will spend a significant
amount of time waiting for service calls, and a multithreaded instance can use the
CPU for other handlers during that time.

Request Scheduling and Pending Latency
App Engine routes each request to an available instance. If all instances are busy, App
Engine starts a new instance. This is App Engine’s automatic scaling feature, and is
what makes it especially useful for handling real-time user traffic for web and mobile
clients.

App Engine considers an instance to be “available” for a request if it believes the
instance can handle the request in a reasonable amount of time. With multithreading
disabled, this definition is simple: an instance is available if it is not presently busy
handling a request.

With multithreading enabled, App Engine decides whether an instance is available
based on several factors. It considers the current load on the instance (CPU and
memory) from its active request handlers, and its capacity. It also considers historical
knowledge of the load caused by previous requests to the given URL path. If it seems

Request Scheduling and Pending Latency | 97

www.it-ebooks.info

http://www.it-ebooks.info/

likely that the new request can be handled effectively in the capacity of an existing
instance, the request is scheduled to that instance.

Incoming requests are put on a pending queue in preparation for scheduling. App
Engine will leave requests on the queue for a bit of time while it waits for existing
instances to become available, before deciding it needs to create new instances. This
waiting time is called the pending latency.

You can control how App Engine decides when to start and stop instances in
response to variances in traffic. App Engine uses sensible defaults for typical applica‐
tions, but you can tune several variables to your app based on how your app uses
computational resources and what traffic patterns you’re expecting.

To set these variables, you edit your app.yaml file, and add an automatic_scaling
section, like so:

automatic_scaling:
 min_pending_latency: automatic
 max_pending_latency: 30ms

The maximum pending latency (max_pending_latency) is the most amount of time a
request will wait on the pending queue before App Engine decides more instances are
needed to handle the current level of traffic. Lowering the maximum pending latency
potentially reduces the average wait time, at the expense of activating more instances.
Conversely, raising the maximum favors reusing existing instances, at the expense of
potentially making the user wait a bit longer for a response. The setting is a number
of milliseconds, with ms as the unit.

The minimum pending latency (min_pending_latency) specifies a minimum amount
of time a request must be on the pending queue before App Engine can conclude a
new instance needs to be started. Raising the minimum encourages App Engine to be
more conservative about creating new instances. This minimum only refers to creat‐
ing new instances. Naturally, if an existing instance is available for a pending request,
the request is scheduled immediately. The setting is a number of milliseconds (with
the unit: 5ms), or automatic to let App Engine adjust this value on the fly as needed
(the default).

Warmup Requests
There is a period of time between the moment App Engine decides it needs a new
instance and the moment the instance is available to handle the next request off the
request queue. During this time, App Engine initializes the instance on the server
hardware, sets up the runtime environment, and makes the app files available to the
instance. App Engine takes this preparation period into account when scheduling
request handlers and instance creation.

98 | Chapter 4: Request Handlers and Instances

www.it-ebooks.info

http://www.it-ebooks.info/

The goal is to make the instance as ready as possible prior to handling the first
request, so when the request handler begins, the user only waits on the request han‐
dler logic, not the initialization. But App Engine can only do so much on its own.
Many initialization tasks are specific to your application code. For instance, App
Engine can’t automatically import every module in a Python app, because imports
execute code, and an app may need to import modules selectively.

App-specific initialization potentially puts undue burden on the first request handler
to execute on a fresh instance. A “loading request” typically takes longer to execute
than subsequent requests handled by the same instance. This is common enough that
App Engine will add a log message automatically when a request is the first request
for an instance, so you can detect a correlation between performance issues and app
initialization.

You can mitigate the impact of app initialization with a feature called warmup
requests. With warmup requests enabled, App Engine will attempt to issue a request
to a specific warmup URL immediately following the creation of a new instance. You
can associate a warmup request handler with this URL to perform initialization tasks
that are better performed outside of a user-facing request handler.

To enable warmup requests, activate the warmup inbound service in your app configu‐
ration. (Refer to “Inbound Services” on page 73.) In Python, set this in your app.yaml
file:

inbound_services:
- warmup

Warmup requests are issued to this URL path:

 /_ah/warmup

You bind your warmup request handler to this URL path in the usual way.

There are a few rare cases where an instance will not receive a
warmup request prior to the first user request even with warmup
requests enabled. Make sure your user request handler code does
not depend on the warmup request handler having already been
called on the instance.

Resident Instances
Instances stick around for a while after finishing their work, in case they can be
reused to handle more requests. If App Engine decides it’s no longer useful to keep an
instance around, it shuts down the instance. An instance that is allocated but is not
handling any requests is considered an idle instance.

Resident Instances | 99

www.it-ebooks.info

http://www.it-ebooks.info/

Instances that App Engine creates and destroys as needed by traffic demands are
known as dynamic instances. App Engine uses historical knowledge about your app’s
traffic to tune its algorithm for dynamic instance allocation to find a balance between
instance availability and efficient use of resources.

You can adjust how App Engine allocates instances by using two settings: minimum
idle instances and maximum idle instances. To adjust these settings, edit your
app.yaml file, and set the appropriate values in the automatic_scaling section, like
so:

automatic_scaling:
 min_idle_instances: 0
 max_idle_instances: automatic

The minimum idle instances (min_idle_instances) setting ensures that a number of
instances are always available to absorb sudden increases in traffic. They are started
once and continue to run even if they are not being used. App Engine will try to keep
resident instances in reserve, starting new instances dynamically (dynamic instances)
in response to load. When traffic increases and the pending queue heats up, App
Engine uses the resident instances to take on the extra load while it starts new
dynamic instances.

Setting a nonzero minimum for idle instances also ensures that at least this many
instances are never terminated due to low traffic. Because App Engine does not start
and stop these instances due to traffic fluctuations, these instances are not dynamic;
instead, they are known as resident instances.

You must enable warmup instances to set the minimum idle instances to a nonzero
value.

Reserving resident instances can help your app handle sharp increases in traffic. For
example, you may want to increase the resident instances prior to launching your
product or announcing a new feature. You can reduce them again as traffic fluctua‐
tions return to normal.

App Engine only maintains resident instances for the default version of your app.
While you can make requests to nondefault versions, only dynamic instances will be
created to handle those requests. When you change the default version (in the Ver‐
sions panel of the Cloud Console), the previous resident instances are allowed to fin‐
ish their current request handlers, then they are shut down and new resident
instances running the new default version are created.

100 | Chapter 4: Request Handlers and Instances

www.it-ebooks.info

http://www.it-ebooks.info/

Resident instances are billed at the same rate as dynamic instances.
Be sure you want to pay for 24 instance hours per day per resident
instance before changing this setting. It can be annoying to see
these expensive instances get little traffic compared to dynamic
instances. But when an app gets high traffic at variable times, the
added performance benefit may be worth the investment.

The maximum idle instances (max_idle_instances) setting adjusts how aggressively
App Engine terminates idle instances above the minimum. Increasing the maximum
causes idle dynamic instances to live longer; decreasing the maximum causes them to
die more quickly. A larger maximum is useful for keeping more dynamic instances
available for rapid fluctuations in traffic, at the expense of greater unused (dynamic)
capacity. The name “maximum idle instances” is not entirely intuitive, but it opposes
“minimum idle instances” in an obvious way: the maximum can’t be lower than the
minimum. A setting of automatic lets App Engine decide how quickly to terminate
instances based on traffic patterns.

Instance Classes and Utilization
App Engine uses several factors to decide when to assign a request to a given
instance. If the request handlers currently running on an instance are consuming
most of the instance’s CPU or memory, App Engine considers the instance fully uti‐
lized, and either looks for another available instance, leaves the request on the pend‐
ing queue, or schedules a new instance to be started.

For safety’s sake, App Engine also assumes a maximum number of concurrent
requests per instance. The default maximum is 10 concurrent request handlers. If
you know in advance that your request handlers consume few computational resour‐
ces on an instance, you can increase this limit to as much as 100. To do so, in the
app.yaml file, edit the automatic_scaling section to include the
max_concurrent_requests setting:

automatic_scaling:
 max_concurrent_requests: 20

Naturally, App Engine may consider an instance utilized when fewer request handlers
than the maximum are running. The maximum just gives App Engine some guidance
as to what’s typical, so it can start more instances before the existing instances get too
hot.

Another way to fit more concurrent requests onto an instance is to just use instances
with more memory and faster CPUs. The instance class determines the computational
resources available to each instance. By default, App Engine uses the smallest instance
class. Larger instance classes provide more resources at a proportionally higher cost
per instance hour.

Instance Classes and Utilization | 101

www.it-ebooks.info

http://www.it-ebooks.info/

You set the instance class for the app using the instance_class setting in app.yaml:
instance_class: F4

With automatic scaling, you can choose from the following instance classes:

F1

128 MB of memory, 600 MHz CPU (this is the default)

F2

256 MB of memory, 1.2 GHz CPU

F4

512 MB of memory, 2.4 GHz CPU

F4_1G

1024 MB (1 GB) of memory, 2.4 GHz CPU

Instance Hours and Billing
Instance use is a resource measured in instance hours. An instance hour corresponds
to an hour of clock time that an instance is alive. An instance is on the clock regard‐
less of whether it is actively serving traffic or is idle, or whether it is resident or
dynamic.

Each instance incurs a mandatory charge of 15 minutes, added to the end of the
instance’s lifespan. This accounts for the computational cost of instance creation and
other related resources. This is one reason why you might adjust the minimum pend‐
ing latency and maximum idle instances settings to avoid excess instance creation.

The free quotas include a set of instance hours for dynamic instances. The free quota
for dynamic instances is enough to power one instance of the most basic class (“F1”)
continuously, plus a few extra hours per day.

Computation is billed by the instance hour. Larger instance classes have proportion‐
ally larger costs per instance hour. See the official documentation for the current
rates. (This industry is competitive, and prices change more frequently than books
do.)

The Instances Console Panel
The Cloud Console includes a panel for inspecting your app’s currently active instan‐
ces. A portion of such a panel is shown in Figure 4-6. In the sidebar navigation, this is
the Instances panel under Compute, App Engine.

102 | Chapter 4: Request Handlers and Instances

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-6. The Instances panel of the Cloud Console

You can use this panel to inspect the general behavior of your application code run‐
ning in an instance. This includes summary information about the number of instan‐
ces, and averages for QPS, latency, and memory usage per instance over the last
minute of activity. Each active instance is also itemized, with its own QPS and latency
averages, total request and error counts over the lifetime of the instance, the age of
the instance, current memory usage, and whether the instance is resident or dynamic.
You can query the logs for requests handled by the individual instance.

You can also shut down an instance manually from this panel. If you shut down a res‐
ident instance, a new resident instance will be started in its place, effectively like
restarting the instance. If you shut down a dynamic instance, a new instance may or
may not be created as per App Engine’s algorithm and the app’s idle instance settings.

As with several other Console panels, the Instances panel is specific to the selected
version of your app. If you want to inspect instances handling requests for a specific
app version, be sure to select it from the Console’s app version drop-down at the top
of the screen.

The Instances Console Panel | 103

www.it-ebooks.info

http://www.it-ebooks.info/

Traffic Splitting
The most important use of versions is to test new software candidates before launch‐
ing them to all of your users. You can test a nondefault version yourself by addressing
its version URL, while all of your live traffic goes to the default version. But what if
you want to test a new candidate with a percentage of your actual users? For that, you
use traffic splitting.

With traffic splitting enabled, App Engine identifies the users of your app, partitions
them according to percentages that you specify, and routes their requests to the ver‐
sions that correspond to their partitions. You can then analyze the logs of each ver‐
sion separately to evaluate the candidate for issues and other data.

To enable traffic splitting, go to the Versions panel. If you have more than one mod‐
ule, select the module whose traffic you want to split. (We’ll look at modules in more
depth in Chapter 5.) Click the “Enable traffic splitting” button, and set the parameters
for the traffic split in the dialog that opens.

The dialog asks you to decide whether users should be identified by IP address or by a
cookie. Splitting by cookie is likely to be more accurate for users with browser clients,
and accommodates cases where a single user might appear to be sending requests
from multiple IP addresses. If the user is not using a client that supports cookies, or
you otherwise don’t want to use them, you can split traffic by IP address. The goal is
for each user to always be assigned the same partition throughout a session with mul‐
tiple requests, so clients don’t get confused talking to multiple versions, and your
experiment gets consistent results.

Traffic splitting occurs with requests sent to the main URL for the app or module.
Requests for the version-specific URLs bypass traffic splitting.

104 | Chapter 4: Request Handlers and Instances

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Using Modules

You can build large web applications using just App Engine’s automatically scaling
instances, and many have. Automatic scaling is well suited to large scale user traffic
and can accommodate real-world traffic spikes with ease. But it isn’t long before you
want to do more computational tasks with App Engine besides serving user traffic
and residual tasks. Other parts of a mature app’s architecture, such as batch jobs,
long-running computing tasks, and special purpose always-on backend services, don’t
quite fit the same mold. Performance tuning that’s suited to one kind of computation
doesn’t suit another. Your web traffic may work well with small instance classes and
aggressive pending queues, while your nightly data crawl needs more memory on a
single instance. And you probably don’t want your user traffic instance pool saturated
by a batch job.

App Engine lets you define sets of instances for different purposes, called modules.
Each module can be configured and tuned separately using all of the options we’ve
discussed so far, such as instance classes and automatic scaling parameters. Each
module gets its own URL, so it can be addressed individually. You can make a mod‐
ule’s URL publicly accessible or just call it internally from other modules. Each mod‐
ule can scale its own instances according to its purpose-specific traffic patterns.

For even greater flexibility, App Engine offers two additional scaling patterns beyond
automatic scaling: manual scaling and basic scaling. With manual scaling, you start
and stop instances directly using the Cloud SDK or within the app by calling an API.
Basic scaling has the same features as manual scaling, with the addition of a simple
configurable scheduler that can start new instances in response to requests and stop
idle instances after a period of time. Each module can be configured to use any of the
three available scaling strategies.

105

www.it-ebooks.info

http://www.it-ebooks.info/

Modules can also be deployed separately from each other, at separate times and with
separate versions. It’s easiest to use the same code base for all modules, but this gives
you more options as to when software versions are deployed or rolled back.

With modules, you can design an architecture that meets your application’s needs,
and develop and tune each component separately.

An Example Layout
Let’s consider a simple modular architecture for our hypothetical multiplayer game.
Refer to Figure 5-1.

Figure 5-1. An example of an application architecture using modules

In this example, a “web frontend” module handles all of the user traffic coming from
browsers, using the automatic scaling strategy. This is the default module for the web‐
site for the game, and serves all traffic for the main domain name. All apps have at
least one module, and typically the default module uses automatic scaling. The exam‐
ple apps we’ve discussed so far have one module using this default configuration.

This multiplayer game has a mobile app. The mobile app communicates with the App
Engine app via an API hosted in the “mobile frontend” module, with its own URL.
Just like the web frontend, this API traffic comes from users, so we use automatic
scaling for this module as well. Making it a separate module from the web traffic iso‐
lates it for the purposes of performance tuning and makes it easier to deploy changes

106 | Chapter 5: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

to the web and mobile experiences separately. We may want to coordinate API sup‐
port with mobile app store releases, or provision additional resident instances in
anticipation of a scheduled mobile launch.

Both user-facing frontend modules use small instance classes and run code tailored to
produce fast responses to user client requests. They communicate with the built-in
App Engine services as usual, such as the datastore, memcache, and task queue serv‐
ices. We use two additional modules to provide custom services of our own.

The “battle simulation backend” service performs heavy-duty computation for updat‐
ing the game world in response to major events. We configure this module to use a
large instance class to take advantage of the faster CPU. We use the basic scaling strat‐
egy for this so we can provision more instances automatically, up to a fixed maximum
number of instances. If we eventually discover that we need more battle simulation
instances, we can evaluate the costs and benefits, and adjust the configuration accord‐
ingly. We might use the “pull queue” feature of the task queue service to send work to
this backend, or we can call it directly from the frontends using an API of our own
design. (For more information on task queues, see Chapter 16.)

The “world cache backend” maintains a copy of the data that describes the game
world. This module is configured to use an instance class with a large amount of
RAM and a fixed number of always-on resident instances. Of course, we must persist
the game world to the datastore on a regular basis or risk losing data. So (in this
hypothetical example) we use a write-behind cache that updates RAM first then peri‐
odically flushes to the datastore with minimal risk of loss. We use manual scaling
because we want this special cache to stay resident as long as possible, and the
amount of memory we need is proportional to the size of the world, not to the num‐
ber of active users.

This example is simplified for illustration purposes; a real multiplayer game architec‐
ture might be more sophisticated. This provides a basic idea of how separate modules
with distinct configurations allow you to optimize costs and performance.

Configuring Modules
You already know how to configure the default module using the app.yaml file. The
file selects the runtime, specifies whether the code is threadsafe, defines handlers
mapped to URL paths, and so forth. By default, the default module uses automatic
scaling, and you can tune its parameters with the automatic_scaling options we dis‐
cussed earlier.

To define a module other than the default module, create another file whose name
ends in .yaml and isn’t one of the other .yaml filenames recognized by App Engine.
Give the module an ID using the module: parameter. It’s typical to use the module
ID for the filename as well, but it’s not required. The module ID follows the same

Configuring Modules | 107

www.it-ebooks.info

http://www.it-ebooks.info/

rules as the app ID: lowercase letters, numbers, hyphens, and the first character must
be a letter.

Continuing the previous example, we can configure the mobile frontend module
(mobile-fe) using a file named mobile-fe.yaml, like so:

module: mobile-fe
application: app-id
version: 1
runtime: python27
api_version: 1
threadsafe: true

instance_class: F2

automatic_scaling:
 min_idle_instances: 3

handlers:
...

The version parameter is specific to the given module, and does not have to be
unique across all modules. The limit of 60 versions applies to the total count of ver‐
sions across all modules.

The app.yaml file for the default module is just a module configuration file. App
Engine knows it describes the default module because it does not contain a module ID
parameter. You can also use the special module ID default to declare that a configu‐
ration file is for the default module.

Manual and Basic Scaling
To declare that the module uses a manual scaling strategy, include a manual_scaling
section in the configuration (and do not include an automatic_scaling section).
Our game’s world data cache is scaled manually with five instances to start, so world-
cache.yaml looks like this:

module: world-cache
application: app-id
version: 1
runtime: python27
api_version: 1
threadsafe: true

instance_class: B4_1G

manual_scaling:
 instances: 5

108 | Chapter 5: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

handlers:
...

The instances parameter sets the number of instances started when the configura‐
tion is deployed for the first time. You can start and stop instances after deployment
by hand with the Cloud Console or programmatically with the modules API
(described in “The Modules API” on page 121).

To declare that the module uses basic scaling, include a basic_scaling section. Our
game’s battle simulation infrastructure is only needed on demand, so battle-sim.yaml
looks like this:

module: battle-sim
application: app-id
version: 1
runtime: python27
api_version: 1
threadsafe: true

instance_class: B8

basic_scaling:
 max_instances: 10
 idle_timeout: 5m

handlers:
...

With basic scaling, max_instances is the maximum number of instances to start in
response to requests to the module. If a request arrives when all instances are busy
and the number of active instances is less than the maximum, a new instance is
started. idle_timeout is the amount of time an instance must be idle before it is shut
down automatically, specified as a number and a unit (m for minutes).

Modules with manual or basic scaling use a different set of instance classes than mod‐
ules with automatic scaling: B1, B2, B4, B4_1G, and B8. These are similar to the corre‐
sponding F* classes, with the addition of B8, which has 1 GB of memory and a 4.8
GHz CPU. If not specified, the default instance class for manual or basic scaling is B2.

If the module’s configuration file does not specify the scaling strategy, or it includes
an automatic_scaling section, then automatic scaling is used for the module.

Manual Scaling and Versions
You can create multiple versions of a module by changing the version: parameter in
its configuration file, then deploying the module. Exactly one version is the default
version for the module, and you can change the default version using the Cloud Con‐

Manual and Basic Scaling | 109

www.it-ebooks.info

http://www.it-ebooks.info/

sole or the appcfg.py command. You can delete unused versions from the Cloud
Console or the appcfg.py command as well.

With manual scaling, App Engine starts the requested number of instances when the
module is deployed. If you have multiple versions of a manually scaled module, App
Engine may be running the requested number of instances for each version of the
module. Be sure to delete unused versions or shut down their instances to avoid
burning through your quota or your budget.

This is different from automatic scaling and resident (minimum idle) instances: resi‐
dent instances are only started and maintained for the default version. Manual scaling
instances are started for all versions when they are deployed, and stay running until
they are shut down via the Cloud Console, the appcfg.py command, or an API call.

Startup Requests
An instance does not run any code until it receives a request. This is reasonable for
modules that respond to requests, such as a service that waits for an API call before
doing any work. In many cases, you probably want the instance to start doing some
work right away, either to kick off a long-running process or to prepare the instance
for responding to future events.

When App Engine starts an instance in a module with manual or basic scaling, it
issues a “start” request at the following URL path:

/_ah/start

You can map a request handler to this path in the handlers: section of the module’s
configuration. This handler is called on each instance that is started.

If the start handler returns, it must return an HTTP status code indicating success
(200–299). A 404 status code is also considered “success,” in case there is no handler
mapped to the URL path. If the handler returns a server error, App Engine considers
the instance startup to have failed and terminates the instance. It then starts a new
instance, if needed.

An instance will not respond to other requests until the start handler has returned. If
the module does not need to respond to requests, then you can put all of the module’s
work in the start handler. The start handler can even be a continuously running pro‐
cess: modules with manual scaling do not have a request deadline. If the module must
do both background work and respond to requests, a better option is for the start
handler to create a background thread, then exit immediately. We’ll look at back‐
ground threads in a moment.

110 | Chapter 5: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Startup requests for modules with manual and basic scaling are similar to warmup
requests for automatic scaling, but you set them up in different ways and use them for
different purposes. (Refer back to “Warmup Requests” on page 98.)

Shutdown Hooks
There are two ways that application code can know when an instance is being
shut down. One is to call the is_shutting_down() function from the
google.appengine.api.runtime module periodically, and react accordingly if the
method returns True:

import webapp2
from google.appengine.api import runtime

class MainHandler(webapp2.RequestHandler):
 def get(self):
 # Initialization.
 # ...

 while not runtime.is_shutting_down():
 # Do a bit of work...

 # Clean up.
 # ...

app = webapp2.WSGIApplication([('/_ah/start', MainHandler)])

Alternatively, the app can register a shutdown hook with the runtime environment.
This hook is a Python function that App Engine calls in a new thread when it’s about
to shut down the instance.

If the function raises an exception, this exception will propagate to all active request
handlers and threads. This makes it easy for the shutdown hook to interrupt all work
in progress and coordinate cleanup efforts:

import webapp2
from google.appengine.api import runtime

class Shutdown(Exception):
 pass

def shutdown():
 # Clean up.
 # ...

 raise Shutdown()

class MainHandler(webapp2.RequestHandler):
 def get(self):
 # Set the shutdown hook.

Shutdown Hooks | 111

www.it-ebooks.info

http://www.it-ebooks.info/

 runtime.set_shutdown_hook(shutdown)

 # Initialization.
 # ...

 try:
 while True:
 # Do work...

 except Shutdown:
 # Additional task-specific cleanup.
 # ...

app = webapp2.WSGIApplication([('/_ah/start', MainHandler)])

Once App Engine has decided to shut down an instance, the app has 30 seconds after
the shutdown hook is called to finish what it is doing. At the end of the 30 seconds,
the instance goes away.

Neither the shutdown hook nor the 30-second runway are guaranteed. Under rare
circumstances, App Engine may need to kill an instance before the shutdown hook
can be called or completed. Long-running processes should persist their state periodi‐
cally and be able to recover from a sudden interruption.

App Engine logs a request to the URL path /_ah/stop when it ini‐
tiates shutdown on an instance. You can’t map a request handler to
this URL: it uses a built-in handler that invokes the shutdown
hook. You can look for this request in the logs when you’re trouble‐
shooting issues with shutdown logic.

Background Threads
During a request handler, an app can invoke regular Python threads to perform con‐
current work. Once the handler returns a response, App Engine assumes that any
unfinished threads are no longer needed and terminates them. Regular threads can‐
not outlast the request handler. This isn’t a problem for modules that do request han‐
dling with automatic scaling, as the request handler exits once it has a response and
can use other means (such as task queues) to defer work. Nor is this a problem for a
simple always-on instance with manual scaling, which can perform a large or contin‐
uously running job in its start handler and manage threads inside that process
without terminating.

We need another solution for the case where a module with manual scaling needs to
perform work in the background and also accept requests. Putting the background
job in the start handler is insufficient because the instance can’t accept requests until
the start handler finishes. Instead, we need a way to initiate work from the start han‐
dler, then exit from the handler while the work continues in the background.

112 | Chapter 5: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

For this purpose, App Engine provides background threads, a special kind of thread
that detaches from the request handler and continues running after the handler
returns. Only instances with manual or basic scaling can use background threads. In
Python, you use the BackgroundThread class from the google.appengine.api.back
ground_thread module as you would the threading.Thread class from the Python
standard library:

from google.appengine.api import background_thread

def work():
 # ...

...
 thread = background_thread.BackgroundThread(
 target=work)
 thread.start()

Log messages for background tasks appear in your logs under a virtual request for the
URL /_ah/background. The virtual request information includes the ID of the
instance on which it is running, and how much time has elapsed since it was started.

Modules and the Development Server
The development server can run multiple modules simultaneously on your local
machine. Each module gets its own port number on localhost, chosen automatically
from the available ports.

To start the development server with modules, run the dev_appserver.py command,
and provide the path to the configuration file of each module you wish to run, includ‐
ing app.yaml:

dev_appserver.py app.yaml battle-sim.yaml mobile-fe.yaml world-cache.yaml

The development server prints the selected port numbers for each module to the con‐
sole:

INFO ... Starting module "default" running at: http://localhost:8080
INFO ... Starting module "battle-sim" running at: http://localhost:8081
INFO ... Starting module "mobile-fe" running at: http://localhost:8082
INFO ... Starting module "world-cache" running at: http://localhost:8083

You can use these ports to send test traffic to modules directly. Traffic to the module
ports is distributed to instances according to the scaling policy for the module.

The individual instances are also assigned ports. You can see the current state of the
instances with statistics and links to all of them in the development server console at
http://localhost:8000.

Modules and the Development Server | 113

www.it-ebooks.info

http://localhost:8000
http://www.it-ebooks.info/

The development server simulates automatic scaling and manual scaling. For mod‐
ules configured with basic scaling, the development server initializes the maximum
number of instances, then issues the /_ah/start request for each instance when the
instance receives its first request.

Unfortunately, there is no way to shut down a simulated instance in the development
server. To test your shutdown hook, you must deploy the app to App Engine. When
running on App Engine, you can shut down instances manually from the command
line or the Cloud Console.

When calling one module from another, you do not need to hard-
code the localhost URLs into your app for testing. Instead, you
can determine the URL for a module by calling a function. See
“Addressing Modules with URLs” on page 115.

Deploying Modules
When we introduced deploying an application with the appcfg.py update com‐
mand, we used the application root directory as its argument:

appcfg.py update myapp

When given the application root directory like this, the appcfg.py update command
locates the app.yaml file in this directory, then deploys the app to the module
described by that file. In previous examples, app.yaml described the default module
with automatic scaling, so this did what we wanted. (This is the only way the filename
app.yaml is special.)

The appcfg.py update command can also accept module configuration file names as
arguments. When given a module configuration file, appcfg.py update deploys the
app and all of its files to that module. This works with app.yaml or any other module
configuration file:

appcfg.py update myapp/world-cache.yaml

You can list multiple module configuration files in one command to deploy them all
in sequence:

appcfg.py update myapp/app.yaml myapp/mobile-fe.yaml \
 myapp/battle-sim.yaml myapp/world-cache.yaml

The appcfg.py update command assumes that the directory containing the configu‐
ration file is the application root directory for the purposes of the module, and it
deploys all of the files it finds to the module. It’s a good practice to use the same appli‐
cation files for all modules, and simply use different handlers: in each configuration
file to control their individual behavior.

114 | Chapter 5: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Alternatively, you can store each module’s configuration file and code in a separate
directory. As long as the application IDs are the same, they will all be deployed to the
same application.

Deploying a module with manual or basic scaling causes all of its active instances to
be stopped and started. If you know a module hasn’t changed and you do not want its
instances to be restarted when you deploy, be sure to exclude that module’s configura‐
tion file from the appcfg.py update command.

So if the runtime environment is selected by a field in the module’s
configuration file, and each module can be deployed separately
with different code, does that mean one app can use different run‐
time environments for different modules? Can you have one mod‐
ule implemented in Python and another module implemented in
Java?
The answer is yes (!), with a proviso. You can write a module in
Java and deploy it to an app that already has another module (pos‐
sibly the default module) in Python, using the same application ID,
different module IDs, and different runtime configurations. The
proviso is that you can’t easily test interactions between the two
modules in a development server. The Python app and the Java app
must run in separate development servers from their correspond‐
ing SDKs, and these development servers know nothing about
each other. They can’t share a simulated datastore or other data
services, and they don’t know each other’s development URLs auto‐
matically. At the very least, you’d have to implement a layer that
detects whether the app is in a development server (via the
SERVER_SOFTWARE environment variable) and stub out the service
calls.
This is still a useful scenario if you’re willing to develop and test the
modules separately, which is a reasonable thing to do anyway. And
you can always deploy nondefault versions to App Engine for inte‐
gration testing.

Addressing Modules with URLs
We’ve already seen how you can access a deployed application using its appspot.com
URL, with the application ID as the leftmost subdomain:

 http://app-id.appspot.com/

We now know that this URL accesses the default version of the default module.
The default version is the version selected as the default in the Versions panel of the
Cloud Console. The default module is the module whose configuration file omits the
module: parameter or sets it to default, typically app.yaml.

Addressing Modules with URLs | 115

www.it-ebooks.info

http://www.it-ebooks.info/

If the app has multiple modules, each module gets its own domain name. This
domain is formed by taking the appspot.com URL for the app and prefixing the
module ID:

 http://module-id.app-id.appspot.com/

This URL accesses the default version of the specified module. If the module has mul‐
tiple instances, App Engine routes a web request for this URL to an instance selected
by its load-balancing algorithm. With automatic scaling, and with basic scaling where
the number of active instances is below the configured maximum, App Engine may
start a new instance if all active instances are busy, though this doesn’t have an imme‐
diate impact on where the current request is routed.

You may recall that it’s possible to access a specific version of an app, with a URL like
this:

 http://version-id.app-id.appspot.com/

More specifically, this accesses a specific version of the default module. You’ve proba‐
bly already guessed that this means there’s a potential for version IDs on the default
module and module IDs to conflict, and you’re right. You can’t use the same ID for a
module and one of the versions of the default module.

You’ve also probably guessed that it’s possible to access a specific version of a specific
module, and you’re right again:

 http://version-id.module-id.app-id.appspot.com/

If a module with manual or basic scaling has multiple instances, you can address the
instance directly with one more piece of the domain:

 http://instance-id.module-id.app-id.appspot.com/

In this case, the instance ID must be a running instance of the default version for the
module. You can also access an instance of a nondefault version of a module using
the longest possible URL, containing all of the IDs:

 http://instance-id.version-id.module-id.app-id.appspot.com/

Instance IDs are determined at runtime, so you need to call an API to figure out what
they are. We’ll see how in “The Modules API” on page 121.

Calling Modules from Other Modules
One of the most common uses of modules is to build backend services for other
modules to access via endpoints. You can send a request from one module to another
using the URL Fetch service, an App Engine service that manages outgoing HTTP
requests. (See Chapter 13 for a complete introduction to this service.) The request can
go to the module’s URL, like any other:

116 | Chapter 5: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

from google.appengine.api import urlfetch

...
 module_url = 'http://module-id.app-id.appspot.com/api/list'
 result = urlfetch.fetch(module_url)
 if result.status_code == 200:
 # ...

Adding the module URL directly to the code like this is not a good practice. Better
would be to calculate the module URL from environmental factors, including
whether the app is running in the development server and what the current app’s ID
is. Helpfully, App Engine has an API for this:

from google.appengine.api import modules
from google.appengine.api import urlfetch

...
 module_url = 'http://{}/api/list'.format(
 modules.get_hostname(module='module-id'))

 result = urlfetch.fetch(module_url)
 if result.status_code == 200:
 # ...

The get_hostname() function in the google.appengine.api.modules module
returns the appropriate module-specific domain name for the environment. In a
development server, this is the localhost hostname with the appropriate port num‐
ber added. On App Engine, this is calculated from the module ID and the current app
ID. The get_hostname() function accepts optional version and instance parame‐
ters to select a specific version or instance, and you can omit any of module, version,
or instance to select the module, version, and instance currently running the code
(or the default version or instance when selecting a different module).

Module endpoints that are called by the app itself usually should not be called by out‐
siders that happen to know the URL. App Engine makes it easy to secure these end‐
points so only calls from within the app and authenticated requests from the app’s
developers can access it. To set this up, configure the handler for the endpoint in the
module’s configuration file so that its login: property is admin:

module: module-id
...

handlers:
- url: /api/.*
 script: backend.app
 login: admin

We saw this administrator-only configuration in “Authorization with Google
Accounts” on page 71. login: admin lets through URL Fetch requests coming from

Addressing Modules with URLs | 117

www.it-ebooks.info

http://www.it-ebooks.info/

the app itself. We’ll see this again later for other kinds of self-calling, such as in Chap‐
ter 16.

Module URLs and Secure Connections
Back in “Configuring Secure Connections” on page 67, we mentioned that app
spot.com URLs with multiple parts need special treatment when using HTTPS. The
same applies to all module-specific appspot.com URLs as well.

As a reminder, to access a module-specific URL with HTTPS, replace all of the dots
(.) to the left of the app ID with -dot- (hyphen, the word “dot,” hyphen), like so:

 https://module-id-dot-app-id.appspot.com/
 https://version-id-dot-module-id-dot-app-id.appspot.com/

Module URLs and Custom Domains
The appspot.com URLs are sufficient for internal calls. If you want to accept external
requests directly to a specific module and you don’t mind sharing your app ID with
the world, you can advertise the appspot.com URL. There’s nothing inherently wrong
with exposing an app ID, but you might prefer to avoid it for aesthetic reasons.

If you set up a custom domain using the procedure discussed in “Domain Names” on
page 62, you can use subdomains of your custom domain to access modules. For this
to work, you must update the DNS record with your DNS hosting service so that the
appropriate subdomains go to Google. You can make this a “wildcard subdomain,” so
all subdomains for your custom domain will work, and you don’t have to update DNS
records as you make changes to module names. Wildcard subdomains are required if
you want to address individual instances directly, because instance IDs are deter‐
mined dynamically.

With the appropriate DNS configuration in place, you can access a module using the
module ID as a subdomain, like so:

http://module-id.example.com/

Similarly, you can access instances like so:

http://instance-id.module-id.example.com/

Subdomains of custom domains always use the default version for the module.

You cannot access modules via subdomains of a custom domain set
up as a Google Apps domain. Unfortunately, at this time, this
means that you cannot access modules with custom domains via
HTTPS. If you need HTTPS, the only option is the appspot.com
domain, using the -dot- notation.

118 | Chapter 5: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Dispatching Requests to Modules
Sometimes you want requests to reach nondefault modules, but you don’t want to
expose URLs on subdomains. Instead, you want to map URL paths on the main
domain to modules. For example, instead of using http://mobile-fe.example.com/
for your mobile REST API, you’d prefer to use http://www.example.com/api/

App Engine lets you do this using yet another configuration file, called dispatch.yaml.
It looks like this:

dispatch:
- url: "*/static/*"
 module: default

- url: "*/api/*"
 module: mobile-fe

- url: "saucy-boomerang-123.appspot.com/test/*"
 module: test

By necessity, this file is very simple: each dispatch rule is a directive for Google’s high-
performance frontends to override its own decision about how to route a request.
The file can contain up to 10 rules. Each rule consists of a url pattern, and the name
of the module that should handle the request, where default is the name of the
default module.

Unlike an app.yaml file, the URL pattern matches both the domain of the request and
the URL path. The first slash (/) in the pattern always matches the boundary between
the domain and the path, and so must be included. You can use a wildcard (*) charac‐
ter at the beginning, at the end, or both, to match zero or more characters. Fancier
pattern matching is not supported.

Consider this url value:

- url: "*/api/*"
 module: mobile-fe

The beginning wildcard appears before the first slash, and so this rule applies to all
domains, including the custom domain, the appspot.com domain, and all subdo‐
mains. The pattern after the first slash matches all URL paths that begin with /api/,
followed by zero or more characters. All requests whose domain and path match this
pattern are routed to the mobile-fe module.

If none of the rules in the dispatch.yaml file match the request, then the usual dis‐
patch logic takes over.

As with other app-wide configuration files, the dispatch.yaml file is deployed with the
rest of the application during appcfg.py update. You can also deploy just this file to
the app by running appcfg.py update_dispatch.

Dispatching Requests to Modules | 119

www.it-ebooks.info

http://www.it-ebooks.info/

Starting and Stopping Modules
When you deploy a module with manual scaling, App Engine ensures that the num‐
ber of instances requested in the configuration file’s instances parameter have
started, starting new ones if necessary. From that point on, the number of instances in
the module can be adjusted via the Cloud Console in the Instances panel, via the
appcfg.py command, or programmatically by calling the modules API from the app.

Instances in a module with basic scaling can also be started and stopped in these
ways. The main difference with basic scaling is that instances are also started and
stopped in response to incoming requests and idle timeouts, respectively. Basic
instances are stopped during a deployment so they can be restarted to pick up the
new software.

To shut down instances from the Cloud Console, go to the Instances panel under
Compute, App Engine, then select the appropriate module and version from the
drop-down menus at the top. (The module drop-down only appears if multiple mod‐
ules are deployed.) The panel includes performance graphs specific to the module
and version, as well as a list of active instances. Click the Shutdown button to stop an
instance.

There is no way to increase the number of instances in a module from the Cloud
Console. The expectation with manual scaling is that the app will start instances as it
needs them via the API. Or you can use the command-line tool.

From the command line, you can stop a module, and start a module. Stopping a
module shuts down all of its instances, and starting a stopped module activates all
of the instances configured for the module. The command takes the module’s .yaml
file as a parameter, or you can just set the --application=…, --module=…, and
--version=… arguments directly:

appcfg.py stop_module_version world-cache.yaml
appcfg.py start_module_version world-cache.yaml

appcfg.py stop_module_version --application=saucy-boomerang-123 \
 --module=world-cache --version=alpha

Finally, you can use the modules API to stop and start modules, and also adjust the
number of instances for a module with manual scaling without deploying a configu‐
ration change. We’ll see how to do that in “The Modules API” on page 121.

Managing and Deleting Modules and Versions
When you deploy a module, App Engine checks the version: parameter in the con‐
figuration file and either creates a new version of the module with that ID if it does
not exist, or replaces the version with that ID if it does.

120 | Chapter 5: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

When you deploy a module for the first time, the first version created becomes the
default version. Otherwise, the default version doesn’t change unless you use the
Cloud Console or the appcfg.py command to change it. To change the default ver‐
sion from the Cloud Console, go to the Versions panel under Compute, App Engine.
Click the checkbox next to the version you want to make the default, then click the
“Make default” button.

Changing the default version for a module with manual or basic scaling changes the
destination of requests to the module URL, and otherwise has no immediate effect on
the module’s instances. Each version’s instances continue to run according to their
scaling policies.

When you’re working with automatic scaling, nondefault versions are mostly incon‐
sequential, because versions that don’t receive traffic don’t consume resources. They
either serve their purpose (as testing versions, for example), or they sit around wait‐
ing to be cleaned up when a developer notices that the app has hit its version count
limit. With manual scaling, cleaning up old versions is much more important. Ver‐
sions of modules with manual scaling keep their instances running until they are
explicitly shut down or the version is deleted. It’s worth keeping careful track of
which versions have active instances that are not being used, and either shutting them
down or deleting them as part of your deployment process.

To delete a version from the Cloud Console, go to the Versions panel as before. Click
the checkboxes next to the versions to delete, then click the Delete button.

Notice that the default module does not have a checkbox next to it. This is a safety
catch to prevent you from deleting the version that is serving the main traffic for the
module. To delete the default version, you must first either make another version the
default, or you must delete all of the other versions. Deleting all versions (by deleting
all nondefault versions, then deleting the default version) deletes the module.

To delete a version from the command line, use the appcfg.py delete_version
command, passing the app ID, module ID, and version ID as the -A, -M, and -V argu‐
ments, respectively. The -M argument can be omitted to delete a version from the
default module, or you can specify -M default:

appcfg.py delete_version -A saucy-boomerang-123 -M world-cache -V alpha

This command will fail if you attempt to delete the default version and other versions
exist. It won’t try to pick a new default version automatically. You can delete the
default version if it is the last version in a module.

The Modules API
App Engine gives you programmatic access to information about the modules
and versions of the running app, as well as the identifiers of the module, version, and

The Modules API | 121

www.it-ebooks.info

http://www.it-ebooks.info/

instance running the code. You can also adjust the number of instances for a module
with manual scaling, and start and stop module versions just as you can from
the command line. All of these functions are provided by the
google.appengine.api.modules module.

We already looked at get_hostname(). This is essential for calculating the URL the
app should use when calling one of its own modules via the URL Fetch service. This
is the only method that will return localhost URLs when running in the develop‐
ment server.

You can get the IDs for the module, version, and instance running the current
code using the get_current_module_name(), get_current_version_name(), and
get_current_instance_id() functions. They take no arguments.

The get_modules() function returns a complete list of the app’s module names,
including default if it exists. (It is technically possible to deploy only named mod‐
ules to an app, and therefore have no default module.)

The get_versions() function returns a list of version IDs. Without an argument, it
returns the versions of the current module. When given a module name as its module
argument, it returns the versions for that module, or raises an exception if the given
module does not exist.

The related function get_default_version() returns the version ID of the default
version. It too takes an optional module name argument, and uses the current mod‐
ule if this is omitted.

There are four methods you can use to manipulate the instances of modules
with manual or basic scaling. You can use get_num_instances() and
set_num_instances(count) to manipulate the number of instances for the module.
These functions take optional module and version arguments that default to the
module or version running the code. Deploying the module resets the number of
instances to the number specified in the configuration file.

Finally, you can start and stop module versions with start_version(module,
version) and stop_version(module,version). The arguments to the
stop_version() function are optional, and default to the current module and ver‐
sion. Calling stop_version() without arguments is a good way for a module to stop
itself.

Remember that stopping an instance will invoke its shutdown
hook, if any, and wait 30 seconds for it to complete.

122 | Chapter 5: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

An Always-On Example
The following simple example illustrates how the start handler, background threads,
and the shutdown hook work together on an always-on instance. The start handler
registers the shutdown hook and kicks off the background thread, then returns. The
background thread increments a global counter once per second. You can inspect the
current value of the counter in a browser with a web request for the "/" URL path.

Here is the Python code. Let’s call this file counter.py:

import logging
import time
import webapp2

from google.appengine.api import runtime
from google.appengine.api import background_thread

GLOBAL_COUNTER = 1

class Shutdown(Exception):
 pass

def shutdown():
 logging.info('Shutdown hook called')
 raise Shutdown()

def counter_loop():
 global GLOBAL_COUNTER
 try:
 while GLOBAL_COUNTER < 600:
 GLOBAL_COUNTER += 1
 time.sleep(1)
 logging.info('Shutting down counter after 600 cycles')
 except Shutdown:
 logging.info('Counter loop saw shutdown')

class MainPage(webapp2.RequestHandler):
 def get(self):
 self.response.out.write('GLOBAL_COUNTER=%d' % GLOBAL_COUNTER)

class StartHandler(webapp2.RequestHandler):
 def get(self):
 runtime.set_shutdown_hook(shutdown)
 thread = background_thread.BackgroundThread(
 target=counter_loop)
 thread.start()

app = webapp2.WSGIApplication([('/', MainPage),
 ('/_ah/start', StartHandler)], debug=True)

An Always-On Example | 123

www.it-ebooks.info

http://www.it-ebooks.info/

The configuration file for this module specifies manual scaling and one instance. We
can put the configuration for the counter module in a file named counter.yaml:

module: counter
application: module-demo
version: 1
runtime: python27
api_version: 1
threadsafe: true

instance_class: B1
manual_scaling:
 instances: 1

handlers:
- url: .*
 script: counter.app

We can deploy this module with this command:

appcfg.py update counter.yaml

And access the interactive display with this URL (given the application and module
IDs shown):

http://counter.module-demo.appspot.com/

If you want to try deploying this example, remember that with manual scaling, all of
the requested instances are started as soon as you deploy. Instance running time con‐
sumes the “backend instance hours” quota, and apps without a budget set only get so
many free hours a day. You’ll want to keep close tabs on the running instance, and
shut it down (or delete the module) when you’re done experimenting.

You can reduce the risk of this example burning through your backend instance
hours quota by changing it to use basic scaling. With basic scaling, the instance won’t
start until you load the interactive display. While the instance is running, the back‐
ground thread will increment the counter once per second, up to 600 (the condition
on the while loop). After 600 seconds, the instance will go idle, then shut down after
the idle timeout you set in the configuration.

124 | Chapter 5: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Datastore Entities

Most scalable web applications use separate systems for handling web requests and
for storing data. The request handling system routes each request to one of many
servers, and the server handles the request without knowledge of other requests going
to other servers. Each request handler behaves as if it is stateless, acting solely on the
content of the request to produce the response. But most web applications need to
maintain state, whether it’s remembering that a customer ordered a product, or just
remembering that the user who made the current request is the same user who made
an earlier request handled by another server. For this, request handlers must interact
with a central database to fetch and update the latest information about the state of
the application.

Just as the request handling system distributes web requests across many machines
for scaling and robustness, so does the database. But unlike the request handlers,
databases are by definition stateful, and this poses a variety of questions. Which
server remembers which piece of data? How does the system route a data query to the
server or servers that can answer the query? When a client updates data, how long
does it take for all servers that know that data to get the latest version, and what does
the system return for queries about that data in the meantime? What happens when
two clients try to update the same data at the same time? What happens when a
server goes down?

Google Cloud Platform offers several data storage services, and each service answers
these questions differently. The most important service for scalable applications is
Google Cloud Datastore, or as it is known to App Engine veterans, simply “the data‐
store.” When App Engine was first launched in 2008, it included the datastore as its
primary means of scalable data storage. The datastore has since gone through major
revisions, and is now a prominent service in the Cloud Platform suite, accessible from

125

www.it-ebooks.info

http://www.it-ebooks.info/

1 In 2011–2012, App Engine transitioned from an older datastore infrastructure, known as the “master/slave”
(M/S) datastore, to the current one, known as the “high replication” datastore (HR datastore, or HRD). The
two architectures differ in how data is updated, but the biggest difference is that the M/S datastore requires
scheduled maintenance periods during which data cannot be updated, and is prone to unexpected failures.
The HR datastore stays available during scheduled maintenance, and is far more resistant to system failure.
All new App Engine applications use the HR datastore, and the M/S datastore is no longer an option. I only
mention it because you’ll read about it in older articles, and may see occasional announcements about
maintenance of the M/S datastore. You may also see mentions of a datastore migration tool, which old apps
still using the M/S datastore can use to switch to the new HR datastore. In this book, “the datastore” always
refers to the HR datastore.

App Engine via the original API or from Compute Engine or elsewhere via a REST
API.

As with App Engine’s request handling, Cloud Datastore manages the scaling and
maintenance of data storage automatically. Your application interacts with an abstract
model that hides the details of managing and growing a pool of data servers. This
model and the service behind it provide answers to the questions of scalable data
storage specifically designed for web applications.

Cloud Datastore’s abstraction for data is easy to understand, but it is not obvious how
to best take advantage of its features. In particular, it is surprisingly different from the
kind of database with which most of us are most familiar, the relational database
(such as the one provided by Google Cloud SQL). It’s different enough that we call it a
“datastore” instead of a “database.” (We’re mincing words, but the distinction is
important.)

Cloud Datastore is a robust, scalable data storage solution. Your app’s data is stored in
several locations by using a best-of-breed consensus protocol (similar to the “Paxos”
protocol), making your app’s access to this data resilient to most service failures and
all planned downtime. When we discuss queries and transactions, we’ll see how this
affects how data is updated. For now, just know that it’s a good thing.

We dedicate the next several chapters to this important subject.1

Entities, Keys, and Properties
Cloud Datastore is best understood as an object database. An object in the datastore
is known as an entity.

An entity has a key that uniquely identifies the object across the entire system. If you
have a key, you can fetch the entity for the key quickly. Keys can be stored as data in
entities, such as to create a reference from one entity to another. A key has several
parts, some of which we’ll discuss here and some of which we’ll cover later.

126 | Chapter 6: Datastore Entities

www.it-ebooks.info

http://www.it-ebooks.info/

2 An entity ID specified by the app is sometimes known as the “key name” in older documentation, to
distinguish it from the numeric ID. The newer terminology is simpler: every entity has an ID, and it’s either a
string provided by the app or a number provided by the datastore.

One part of the key is the project ID, which ensures that nothing else about the key
can collide with the entities of any other project. It also ensures that no other app can
access your app’s data, and that your app cannot access data for other apps. This fea‐
ture of keys is automatic, and doesn’t appear in the API (or in any examples shown
here).

An important part of the key is the kind. An entity’s kind categorizes the entity for the
purposes of queries, and for ensuring the uniqueness of the rest of the key. For exam‐
ple, a shopping cart application might represent each customer order with an entity
of the kind “Order.” The application specifies the kind when it creates the entity.

The key also contains an entity ID. This can be an arbitrary string specified by the
app, or it can be an integer generated automatically by the datastore.2 An entity has
either a string ID or a numeric ID, but not both.

System-assigned numeric IDs are generally increasing, although they are not guaran‐
teed to be monotonically increasing. If you want a strictly increasing ID, you must
maintain this yourself in a transaction. (For more information on transactions, see
Chapter 8.) If you purposefully do not want an increasing ID, such as to avoid expos‐
ing data sizes to users, you can either generate your own string ID, or allow the sys‐
tem to generate a numeric ID, then encrypt it before exposing it to users.

Consider a simple example where we store information about books in an online
book catalog. We might represent each book with an entity in the datastore. The
key for such an entity might use a kind of Book, and a system-assigned numeric ID,
like so:

 Book, 13579

Alternatively, we could use an externally defined identifier for each book, such as the
ISBN, stored as a string ID on the key:

 Book, "978-0-24680-321-0"

Once an entity has been created, its key cannot be changed. This applies to all parts of
its key, including the kind and the ID.

The data for the entity is stored in one or more properties. Each property has a name
and at least one value. Each value is of one of several supported data types, such as a
string, an integer, a date-time, or a null value. We’ll look at property value types in
detail later in this chapter.

Entities, Keys, and Properties | 127

www.it-ebooks.info

http://www.it-ebooks.info/

• A property can have multiple values, and each value can be of a different type. As
you will see in “Multivalued Properties” on page 134, multivalued properties have
unusual behavior, but are quite useful for modeling some kinds of data, and sur‐
prisingly efficient.

It’s tempting to compare these concepts with similar concepts in
relational databases: kinds are tables, entities are rows, and proper‐
ties are fields or columns. That’s a useful comparison, but watch
out for differences.
Unlike a table in a relational database, there is no relationship
between an entity’s kind and its properties. Two entities of the same
kind can have different properties set or not set, and can each have
a property of the same name but with values of different types. You
can (and often will) enforce a data schema in your own code, and
App Engine includes libraries to make this easy, but this is not
required by the datastore.
Also, unlike relational databases, keys are not properties. You can
perform queries on IDs just like properties, but you cannot change
a string ID after the entity has been created.
A relational database cannot store multiple values in a single cell,
while an App Engine property can have multiple values.

Introducing the Python Datastore API
In the Python API for the App Engine datastore, Python objects represent datastore
entities. The class of the object corresponds to the entity’s kind, where the name of
the class is the name of the kind. You define kinds by creating classes that extend one
of the provided base classes.

Each attribute of the object corresponds with a property of the entity. To create a new
entity in the datastore, you call the class constructor, set attributes on the object, then
call a method to save it. To update an existing entity, you call a method that returns
the object for the entity (such as via a query), modify its attributes, and then save it.

Example 6-1 defines a class named Book to represent entities of the kind Book. It cre‐
ates an object of this class by calling the class constructor, and then sets several prop‐
erty values. Finally, it calls the put() method to save the new entity to the datastore.
The entity does not exist in the datastore until it is put() for the first time.

128 | Chapter 6: Datastore Entities

www.it-ebooks.info

http://www.it-ebooks.info/

Example 6-1. Python code to create an entity of the kind Book

from google.appengine.ext import ndb
import datetime

class Book(ndb.Expando):
 pass

...
 obj = Book()
 obj.title = 'The Grapes of Wrath'
 obj.author = 'John Steinbeck'
 obj.copyright_year = 1939
 obj.author_birthdate = datetime.datetime(1902, 2, 27)

 obj.put()

The Book class inherits from the class Expando in App Engine’s ndb package. The
Expando base class says Book objects can have any of their properties assigned any
value. The entity “expands” to accommodate new properties as they are assigned to
attributes of the object. Python does not require that an object’s member variables be
declared in a class definition, and this example takes advantage of this by using
an empty class definition—the pass keyword indicates the empty definition—and
assigning values to attributes of the object after it is created. The Expando base class
knows to use the object’s attributes as the values of the corresponding entity’s proper‐
ties.

The Expando class has a funny name because this isn’t the way the API’s designers
expect us to create new classes in most cases. Instead, you’re more likely to use the
Model base class with a class definition that ensures each instance conforms to a
structure, so a mistake in the code doesn’t accidentally create entities with malformed
properties. Here is how we might implement the Book class using Model:

class Book(ndb.Model):
 title = ndb.StringProperty()
 author = ndb.StringProperty()
 copyright_year = ndb.IntegerProperty()
 author_birthdate = ndb.DateTimeProperty()

The Model version of Book specifies a structure for Book objects that is enforced while
the object is being manipulated. It ensures that values assigned to an object’s proper‐
ties are of appropriate types, such as string values for title and author properties,
and raises a runtime error if the app attempts to assign a value of the wrong type to a
property. With Model as the base class, the object does not “expand” to accommodate
other entities: an attempt to assign a value to a property not mentioned in the class
definition raises a runtime error. Model and the various Property definitions also

Introducing the Python Datastore API | 129

www.it-ebooks.info

http://www.it-ebooks.info/

provide other features for managing the structure of your data, such as automatic val‐
ues, required values, and the ability to add your own validation and serialization
logic.

It’s important to notice that these validation features are provided by the Model class
and your application code, not the datastore. Even if part of your app uses a Model
class to ensure a property’s value meets certain conditions, another part of your app
can still retrieve the entity without using the class and do whatever it likes to that
value. The bad value won’t raise an error until the app tries to load the changed entity
into a new instance of the Model class. This is both a feature and a burden: your app
can manage entities flexibly and enforce structure where needed, but it must also be
careful when those structures need to change. Data modeling and the Model class are
discussed in detail in Chapter 9.

The Book constructor accepts initial values for the object’s properties as keyword
arguments. The constructor code earlier could also be written like this:

 obj = Book(title='The Grapes of Wrath',
 author='John Steinbeck',
 copyright_year=1939,
 author_birthdate=datetime.datetime(1902, 2, 27))

As written, this code does not set an ID for the new entity. Without an ID, the data‐
store generates a unique numeric ID when the object is saved for the first time. If you
prefer to use an ID generated by the app, you call the constructor with the id parame‐
ter, as follows:

obj = Book(id='0143039431',
 title='The Grapes of Wrath',
 author='John Steinbeck',
 copyright_year=1939,
 author_birthdate=datetime.datetime(1902, 2, 27))

130 | Chapter 6: Datastore Entities

www.it-ebooks.info

http://www.it-ebooks.info/

Because the Python API uses keyword arguments, object attributes,
and object methods for purposes besides entity properties, there
are several property names that are off-limits. For instance, you
cannot use the Python API to set a property named id, because this
could get confused with the id parameter for the object construc‐
tor. Names reserved by the Python API are enforced in the API, but
not in the datastore itself.
The property names reserved by ndb are:

• id

• key

• namespace

• parent

The datastore itself reserves all property names beginning and end‐
ing with two underscores (such as __internal__). This particular
rule also applies to kind names.
The Python API ignores all object attributes whose names begin
with a single underscore (such as _counter). You can use such
attributes to attach data and functionality to an object that should
not be saved as properties for the entity.

The complete key of an entity, including the ID and kind, must be unique. (We’ll dis‐
cuss another part to keys that contributes to a key’s uniqueness, called ancestors, in
Chapter 8.) If you build a new object with a key that is already in use, and then try to
save it, the save will replace the existing object. When you don’t want to overwrite
existing data, you can use a system-assigned ID in the key, or you can use a transac‐
tion to test for the existence of an entity with a given key and create it if it doesn’t
exist.

The API provides a shortcut for creating entities with app-assigned string IDs. The
get_or_insert() class method takes a string ID and either returns an existing entity
with that ID, or creates a new entity with that ID and returns it. The method also
takes initial property values to use with the newly created entity. Property value argu‐
ments are ignored if an entity with the given ID already exists. Either way, the method
is guaranteed to return an object that represents an entity in the datastore:

 obj = Book.get_or_insert(
 key_name='0143039431'
 title='The Grapes of Wrath',
 author='John Steinbeck',
 copyright_year=1939,
 author_birthdate=datetime.datetime(1902, 2, 27))

 # obj is a stored entity, either the previous entity with the

Introducing the Python Datastore API | 131

www.it-ebooks.info

http://www.it-ebooks.info/

 # key Book:'0143039431' (no changes to properties) or a new
 # entity with that key and the provided property values.

Property Values
Each value data type supported by the datastore is represented by a primitive type in
the language for the runtime or a class provided by the API. The data types and their
language-specific equivalents are listed in Table 6-1. In this table, ndb is the Python
package google.appengine.ext.ndb, and users is google.appengine.api.users.

Table 6-1. Datastore property value types and equivalent Python types

Data type Python type

Unicode text string (up to 500 characters, indexed) unicode

Long Unicode text string (not indexed) unicode or str

Byte string (up to 500 bytes, indexed) str

Long byte string (not indexed) str

Boolean bool

Integer (64-bit) int or long (converted to 64-bit long)

Float (double precision) float

Date-time datetime.datetime

Null value None

Entity key ndb.Key

A Google account users.User

A geographical point ndb.GeoPt

Example 6-2 demonstrates the use of several of these data types.

Example 6-2. Code to set property values of various types

import datetime
import webapp2

from google.appengine.ext import ndb
from google.appengine.api import users

132 | Chapter 6: Datastore Entities

www.it-ebooks.info

http://www.it-ebooks.info/

class Comment(ndb.Expando):
 pass

class CommentHandler(webapp2.RequestHandler):
 def post(self):
 c = Comment()
 c.commenter = users.get_current_user() # returns a users.User object
 c.message = self.request.get('message')
 c.date = datetime.datetime.now()
 c.put()

 # Redirect to a result page...

When you use Python’s ndb.Expando, values that are converted to
native datastore types when stored come back as the datastore
types when you retrieve the entity. For example, an int value is
stored as a long, and so appears as a long on the retrieved object. If
you use ndb.Expando in your app, it’s best to use the native data‐
store types, so the value types stay consistent.
The data modeling interfaces offer a way to store values in these
alternative types and convert them back automatically when
retrieving the entity. (For more information on data modeling, see
Chapter 9.)

Strings, Text, and Bytes
The datastore has two distinct data types for storing strings of text: short strings and
long strings. Short strings are indexed; that is, they can be the subject of queries, such
as a search for every Person entity with a given value for a last_name property. Short
string values must be less than 500 bytes in length. Long strings can be longer than
500 bytes, but are not indexed.

Text strings, short and long, are strings of characters from the Unicode character set.
Internally, the datastore stores Unicode strings by using the UTF-8 encoding, which
represents some characters using multiple bytes. This means that the 500-byte limit
for short strings is not necessarily the same as 500 Unicode characters. The actual
limit on the number of characters depends on which characters are in the string.

When using ndb.Expando and no Property declarations, fields are considered index‐
able by default. Setting a property to a str value longer than 500 bytes or a unicode
value longer than 500 characters stores the propery as nonindexed automatically. For
more control over this process, see Chapter 9.

Property Values | 133

www.it-ebooks.info

http://www.it-ebooks.info/

Unset Versus the Null Value
One possible value of a property is the null value. In Python, the null value is repre‐
sented by None.

A property with the null value is not the same as an unset property. Consider the fol‐
lowing code:

class Entity(ndb.Expando):
 pass

...
 a = Entity()
 a.prop1 = 'abc'
 a.prop2 = None
 a.put()

 b = Entity()
 b.prop1 = 'def'
 b.put()

This creates two entities of the kind Entity. Both entities have a property named
prop1. The first entity has a property named prop2; the second does not.

Of course, an unset property can be set later:

 b.prop2 = 123
 b.put()

 # b now has a property named "prop2."

Similarly, a set property can be made unset. In the API, you delete the property by
deleting the attribute from the object, using the del keyword:

 del b.prop2
 b.put()

 # b no longer has a property named "prop2."

Multivalued Properties
As we mentioned earlier, a property can have multiple values. We’ll discuss the more
substantial aspects of multivalued properties when we talk about queries and data
modeling. But for now, it’s worth a brief mention.

A property can have one or more values. A property cannot have zero values; a prop‐
erty without a value is simply unset. Each value for a property can be of a different
type, and can be the null value.

The datastore preserves the order of values as they are assigned. The API returns the
values in the same order as they were set.

134 | Chapter 6: Datastore Entities

www.it-ebooks.info

http://www.it-ebooks.info/

3 If you are upgrading to ndb from the ext.db library, notice that the former key() method is now a key
attribute. In general, keys are handled rather differently in ndb than in ext.db.

In Python, a property with multiple values is represented as a single Python list
value:

 e.prop = [1, 2, 'a', None, 'b']

Because a property must have at least one value, it is an error to
assign an empty list ([] in Python) to a property on an entity
whose class is derived from the ndb.Expando class:

class Entity(ndb.Expando):
 pass

...
 e = Entity()
 e.prop = [] # ERROR

To be able to represent the empty list, you must declare the prop‐
erty type and specify that the property is repeated. In the following
example, the property prop is declared as a GenericProperty,
which does not enforce a type for the values in the list:

class Entity(ndb.Expando):
 prop = ndb.GenericProperty(repeated=True)

...
 e = Entity()
 e.prop = [] # OK

The Property declaration takes care of translating between “no
property set” in the datastore and the empty list value in the code.
Again, we’ll see more about property declarations in Chapter 9.

Keys and Key Objects
The key for an entity is a value that can be retrieved, passed around, and stored like
any other value. If you have the key for an entity, you can retrieve the entity from the
datastore quickly, much more quickly than with a datastore query. Keys can be stored
as property values, as an easy way for one entity to refer to another.

The API represents an entity key value as an instance of the Key class, in the ndb
package. To get the key for an entity, you access the entity object’s key attribute.3 The
Key instance provides access to its several parts by using accessor methods, including
the kind, string ID (if any), and system-assigned ID (if the entity does not have a
string ID).

Keys and Key Objects | 135

www.it-ebooks.info

http://www.it-ebooks.info/

When you construct a new entity object and do not provide a string ID, the entity
object has a key, but the key does not yet have an ID. The ID is populated when the
entity object is saved to the datastore for the first time. You can get the key object
prior to saving the object, but it will be incomplete:

 e = Entity()
 e.prop = 123

 k = e.key # key is incomplete, does not have an ID
 kind = k.kind() # 'Entity'

 e.put() # ID is assigned
 k = e.key # key is complete, has ID
 id = k.id() # the system-assigned ID

If the entity object was constructed with a string ID, the key is complete before the
object is saved—although, if the entity has not been saved, the string ID is not guar‐
anteed to be unique. (The entity class method get_or_insert(), mentioned earlier,
always returns a saved entity, either one that was saved previously or a new one cre‐
ated by the call.)

If the key is incomplete, the id() method returns None. If the key is complete, id()
returns either the string ID (as a str) or the numeric ID (long), whichever one it has.
You can request the string ID or integer ID directly using string_id() or
integerid(), respectively. These methods return None if the key is incomplete or if
the ID is not of the requested type.

Once you have a complete key, you can assign it as a property value on another entity
to create a reference:

 e2 = Entity()
 e2.ref = k
 e2.put()

If you know the kind and ID of an entity in the datastore, you can construct the key
for that entity without its object. The ndb.Key() constructor can take a kind name
(str) and an ID (str or long). A complete explanation of this feature involves
another feature we haven’t mentioned yet (ancestor paths), but the following suffices
for the examples you’ve seen so far:

 e = Entity(id='alphabeta')
 e.prop = 123
 e.put()

 # ...

 k = ndb.Key('Entity', 'alphabeta')

136 | Chapter 6: Datastore Entities

www.it-ebooks.info

http://www.it-ebooks.info/

Ancestor paths are related to how the datastore does transactions. (We’ll get to them
in Chapter 8.) For the entities we have created so far, the path is just the kind followed
by the ID or name.

Keys can be converted to string representations for the purposes of passing around as
textual data, such as in a web form or cookie. The string representation avoids char‐
acters considered special in HTML or URLs, so it is safe to use without escaping char‐
acters. The encoding of the value to a string is simple and easily reversed, so if you
expose the string value to users, be sure to encrypt it, or make sure all key parts (such
as kind names) are not secret. When accepting an encoded key string from a client,
always validate the key before using it.

To get the URL-safe string representation of a key, call the urlsafe() method.
To reconstruct a Key from such a string, pass it to the constructor’s urlsafe named
argument:

 k_str = k.urlsafe()

 # ...

 k = ndb.Key(urlsafe=k_str)

Using Entities
Let’s look briefly at how to retrieve entities from the datastore by using keys, how to
inspect the contents of entities, and how to update and delete entities. The API meth‐
ods for these features are straightforward.

Getting Entities Using Keys
Given a complete key for an entity, you can retrieve the entity from the datastore.
Construct the ndb.Key object if you don’t already have one, then call its get()
method:

from google.appengine.ext import ndb

...
 k = ndb.Key('Entity', 'alphabeta')

 e = k.get()

If you know the kind and ID of the entity you are fetching, you can also use the
get_by_id() class method on the appropriate entity class:

class Entity(ndb.Expando):
 pass

...
 e = Entity.get_by_id('alphabeta')

Using Entities | 137

www.it-ebooks.info

http://www.it-ebooks.info/

To fetch multiple entities in a batch, you can pass a list of Key objects to the
ndb.get_multi() function. The method returns a list containing entity objects, with
None values for keys that do not have a corresponding entity in the datastore:

 entities = ndb.get_multi([k1, k2, k3])

Getting a batch of entities in this way performs a single service call to the datastore
for the entire batch. This is faster than getting each entity in a separate call. ndb
knows how to batch calls to the datastore service automatically, so you only need to
use ndb.get_multi() when it is convenient for your code.

Of course, you won’t always have the keys for the entities you want to fetch from the
datastore. To retrieve entities that meet other criteria, you use datastore queries.
(We’ll discuss queries in Chapter 7.)

Inspecting Entity Objects
Entity objects have methods for inspecting various aspects of the entity.

The API has several features for inspecting entities worth mentioning here. You’ve
already seen the key attribute of an entity object, which returns the ndb.Key.

Entity properties can be accessed and modified just like object attributes:

 e.prop1 = 1
 e.prop2 = 'two'

 self.response.write('prop2 has the value ' + e.prop2)

You can use Python built-in functions for accessing object attributes to access entity
properties. For instance, to test that an entity has a property with a given name, use
the hasattr() built-in:

 if hasattr(e, 'prop1'):
 # ...

To get or set a property whose name is defined in a string, use getattr() and
setattr(), respectively:

 # Set prop1, prop2, ..., prop9.
 for n in range(1, 10):
 value = n * n
 setattr(e, 'prop' + str(n), value)

 value = getattr(e, 'prop' + str(7))

We’ve seen that property values can be initialized with arguments passed to the entity
class’s constructor. As with all named arguments in Python, you can pass a mapping
(dict) of keys and values to this constructor using the ** syntax:

138 | Chapter 6: Datastore Entities

www.it-ebooks.info

http://www.it-ebooks.info/

 props = {'name1': 'value1', 'name2': 'value2'}
 e = Entity(**props)

The populate() method provides another way to set properties after the entity has
been constructed. This method takes named arguments just like the constructor, and
can also take a mapping using the ** syntax:

 e.populate(name1='value1', name2='value2')

 e.populate(**props)

You can get all of an entity’s properties as a dict by calling the to_dict() method. By
default, all properties are included. You can limit the mapping to a specific set of
properties by passing a list of names as the include argument. Alternatively, you can
exclude specific properties (and return all others) with the exclude argument. Here is
an example using the default behavior:

 e = Entity(name1='value1', name2='value2')

 prop_dict = e.to_dict()
 for name in prop_dict:
 # ... prop_dict[name] ...

Note that some Property declared types, such as JsonProperty, use mutable objects
(such as dict values) to represent their values. to_dict() will return these values as
direct references to those objects, not copies.

Saving Entities
Calling the put() method on an entity object saves the entity to the datastore. If the
entity does not yet exist in the datastore, put() creates the entity. If the entity exists,
put() updates the entity so that it matches the object:

 e = Entity()
 e.prop = 123

 e.put()

When you update an entity, the app sends the complete contents of the entity to the
datastore. The update is all or nothing: there is no way to send just the properties that
have changed to the datastore. There is also no way to update a property on an entity
without retrieving the complete entity, making the change, and then sending the new
entity back.

You use the same API to create an entity as you do to update an entity. The datastore
does not make a distinction between creates and updates. If you save an entity with a
complete key (such as a key with a kind and a string ID) and an entity already exists
with that key, the datastore replaces the existing entity with the new one.

Using Entities | 139

www.it-ebooks.info

http://www.it-ebooks.info/

If you want to test that an entity with a given key does not exist
before you create it, you can do so using a transaction. You must
use a transaction to ensure that another process doesn’t create an
entity with that key after you test for it and before you create it. For
more information on transactions, see Chapter 8.

If you have several entity objects to save, you can save them all in one call using the
put_multi() function in the ndb package:

 ndb.put_multi([e1, e2, e3])

When the call to put() returns, the datastore entity records are up-to-date, and all
future fetches of these entities in the current request handler and other handlers will
see the new data. The specifics of how the datastore gets updated are discussed in
detail in Chapter 8.

Deleting Entities
To delete an entity, you acquire or construct its ndb.Key, then call the delete()
method:

 e = ndb.Key('Entity', 'alphabeta').get()
 # ...
 e.key.delete()

 # Deleting without first fetching the entity:
 k = ndb.Key('Entity', 'alphabeta')
 k.delete()

As with gets and puts, you can delete multiple keys in a single batch call with
ndb.delete_multi():

 ndb.delete_multi([e1, e2, e3])

Allocating System IDs
When you create a new entity without specifying an explicit string ID, the datastore
assigns a numeric system ID to the entity. Your code can read this system ID from the
entity’s key after the entity has been created.

Sometimes you want the system to assign the ID, but you need to know what ID will
be assigned before the entity is created. For example, say you are creating two entities,
and the property of one entity must be set to the key of the other entity. One option is
to save the first entity to the datastore, then read the key of the entity, set the property
on the second entity, and then save the second entity:

140 | Chapter 6: Datastore Entities

www.it-ebooks.info

http://www.it-ebooks.info/

class Entity(db.Expando):
 pass

...
 e1 = Entity()
 e1.put()

 e2 = Entity()
 e2.reference = e1.key()
 e2.put()

This requires two separate calls to the datastore in sequence, which takes valuable
clock time. It also requires a period of time where the first entity is in the datastore
but the second entity isn’t.

We can’t read the key of the first entity before we save it, because it is incomplete:
reading e1.key before calling e1.put() would return an unusable value. We could
use a string ID instead of a system ID, giving us a complete key, but it’s often the case
that we can’t easily calculate a unique string ID, which is why we’d rather have a
system-assigned ID.

To solve this problem, the datastore provides a method to allocate system IDs ahead
of creating entities. You call the datastore to allocate an ID (or a range of IDs for mul‐
tiple entities), then create the entity with an explicit ID. Notice that this is not the
same as using a string ID: you give the entity the allocated numeric ID, and it knows
the ID came from the system.

To allocate one or more system IDs, call the allocate_ids() class method of the
entity class. The method takes a number of IDs to allocate (size) or a maximum ID
value to allocate (max):

 # Allocate 1 system ID for entities of kind "Entity".
 ids = Entity.allocate_ids(size=1)

 e1 = Entity(id=ids[0])
 e2 = Entity()
 e2.reference = e1.key

 ndb.put_multi([e1, e2])

The allocate_ids() method acquires unused unique IDs given the rest of the key. In
simple cases, the rest of the key is just the kind name, which is derived from the class
whose allocate_ids() method you are calling. For keys with ancestory paths, you
must also provide the parent argument, whose value is an ndb.Key. See Chapter 8 for
information on keys with ancestor paths.

Allocating System IDs | 141

www.it-ebooks.info

http://www.it-ebooks.info/

A batch put of two entities does not guarantee that both entities are
saved together. If your app logic requires that either both entities
are saved or neither are saved, you must use a transaction. For
more information, see Chapter 8. (As you can probably tell by now,
that’s an important chapter.)

The Development Server and the Datastore
The development server simulates the datastore service on your local machine while
you’re testing your app. All datastore entities are saved to a local file. This file is asso‐
ciated with your app, and persists between runs of the development server, so your
test data remains available until you delete it.

You can tell the development server to reset this data when it starts. From the com‐
mand line, you pass the --clear_datastore argument to dev_appserver.py:

dev_appserver.py --clear_datastore appdir

142 | Chapter 6: Datastore Entities

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Datastore Queries

Inevitably, an application that manages data must do more than store and retrieve
that data one record at a time. It must also answer questions about that data: which
records meet certain criteria, how records compare to one another, what a set of
records represents in aggregate. Web applications in particular are expected not only
to know the answers to questions about large amounts of data, but to provide them
quickly in response to web requests.

Most database systems provide a mechanism for executing queries, and Cloud Data‐
store is no exception. But the datastore’s technique differs significantly from that of
traditional database systems. When the application asks a question, instead of rifling
through the original records and performing calculations to determine the answer,
Cloud Datastore simply finds the answer in a list of possible answers prepared in
advance. The datastore can do this because it knows which questions are going to be
asked.

This kind of list, or index, is common to many database technologies, and relational
databases can be told to maintain a limited set of indexes to speed up some kinds of
queries. But Cloud Datastore is different: it maintains an index for every query the
application is going to perform. Because the datastore only needs to do a simple scan
of an index for every query, the application gets results back quickly. And for large
amounts of data, Cloud Datastore can spread the data and the indexes across many
machines, and get results back from all of them without an expensive aggregate
operation.

This indexing strategy has significant drawbacks. The datastore’s built-in query
engine is downright weak compared to some relational databases, and is not suited to
sophisticated data processing applications that would prefer slow but powerful run‐
time queries to fast simple ones. But most web applications need fast results, and the
dirty secret about those powerful query engines is that they can’t perform at web

143

www.it-ebooks.info

http://www.it-ebooks.info/

speeds with large amounts of data distributed across many machines. Cloud Data‐
store uses a model suited to scalable web applications: calculate the answers to known
questions when the data is written, so reading is fast.

In this chapter, we explain how queries and indexes work, how the developer tools
help you configure indexes automatically, and how to manage indexes as your appli‐
cation evolves. We also discuss several powerful features of the query engine, includ‐
ing cursors and projection queries. By understanding indexes, you will have an
intuition for how to design your application and your data to make the most of the
scalable datastore.

Queries and Kinds
You’ve seen how to retrieve an entity from the datastore given its key. But in most
cases, the application does not know the keys of the entities it needs; it has only a gen‐
eral idea that it needs entities that meet certain criteria. For example, a leaderboard
for the game app would need to retrieve the 10 Player entities with the highest score
property values.

To retrieve entities this way, the app performs a query. A query includes:

• The kind of the entities to query
• Zero or more filters, criteria that property values must meet for an entity to be

returned by the query
• Zero or more sort orders that determine the order in which results are returned

based on property values

A query based on property values can only return entities of a single kind. This is the
primary purpose of kinds: to determine which entities are considered together as
possible results for a query. In practice, kinds correspond to the intuitive notion that
each entity of the same nominal kind represents the same kind of data. But unlike
other database systems, it’s up to the app to enforce this consistency if it is desired,
and the app can diverge from it if it’s useful.

It is also possible to perform a limited set of queries on entities regardless of kind.
Kindless queries can use a filter on the ID or key name, or on ancestors. We’ll discuss
ancestors and kindless queries in Chapter 8.

Query Results and Keys
When retrieving results for an entity query, the datastore returns the full entity for
each result to the application.

144 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

For large entities, this may mean more data is transmitted between the datastore and
the app than is needed. It’s possible to fetch only a subset of properties under certain
circumstances (we’ll see this in “Projection Queries” on page 186), but these are not
full entities. Another option is to store frequently accessed properties on one entity,
and less popular properties on a separate related entity. The first entity stores the key
of the second entity as a property, so when the app needs the less popular data, it
queries for the first entity, then follows the reference to the second entity.

The datastore can return just the keys for the entities that match your query instead
of fetching the full entities. A keys-only query is useful for determining the entities
that match query criteria separately from when the entities are used. Keys can be
remembered in the memcache or in a datastore property, and vivified as full entities
when needed. We’ll look at the API for keys-only queries a bit later.

The Query API
Recall that the Python datastore API represents entities using objects of classes
named after kinds. To review, here is code that creates three Player entities for an
online role-playing game:

from google.appengine.ext import ndb
import datetime

class Player(ndb.Model):
 name = ndb.StringProperty()
 level = ndb.IntegerProperty()
 score = ndb.IntegerProperty()
 charclass = ndb.StringProperty()
 create_date = ndb.DateTimeProperty(auto_now_add=True)

player1 = Player(name='wizard612',
 level=1,
 score=32,
 charclass='mage')
player1.put()

player2 = Player(name='druidjane',
 level=10,
 score=896,
 charclass='druid')
player2.put()

player3 = Player(name='TheHulk',
 level=7,
 score=500,
 charclass='warrior')
player3.put()

The Query API | 145

www.it-ebooks.info

http://www.it-ebooks.info/

This example uses the Model base class and declared property types. Declared proper‐
ties help to enforce a consistent layout, or schema, for your entities. As we start talk‐
ing about queries, the importance of using a schema for entities of a kind will become
apparent.

Here is a simple query for entities of the Player kind that have a level property
greater than or equal to 5:

q = Player.query().filter(Player.level >= 5)

results = q.fetch(10)

for entity in results:
 # assert entity.level >= 5
 # ...

When you create or update an entity with new data, the indexes
that support queries about that data are also updated. For the type
of queries discussed in this chapter, the call to put() may return
before the indexes have been updated. If you perform such a query
immediately after an update, the results may not reflect the change.
The development server simulates this possibility with a delay:

player1.level = 6
player1.put()

put() returns while the Player.level
index update is still in progress.

q = Player.query().filter(Player.level >= 5)
results = q.fetch(10)

results may not contain player1.

We’ll discuss consistency guarantees and how to formulate queries
transactionally in Chapter 8.

The API provides two ways to formulate queries, one using an object-oriented inter‐
face, and one based on a text-based query language called “GQL.”

The Query Class
The first way to formulate a query is with an instance of the Query class. The Query
object can be constructed in one of two ways, with equivalent results:

q = Player.query()

q = ndb.Query(kind=Player)

146 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

1 In ndb, Query objects are immutable, and you use methods to derive new Query objects. This is unlike the old
ext.db library, which mutated the Query object directly when methods like filter() were called.

In both cases, q is assigned a new Query instance that represents all entities of the
kind Player. The query is not executed right away; right now it’s just a question wait‐
ing to be asked. Without filters or sort orders, the object represents a query for all
objects of the given kind.

To apply a filter to the query, you call the filter() method on the Query object. This
returns a new Query object, leaving the original object unchanged.1 The argument to
the filter() method is an expression that describes the filter, consisting of a prop‐
erty, an operator, and a value:

q = q.filter(Player.level > 5)

Yes, this looks a little weird, but it actually does what it looks like it does. The prop‐
erty is described using the attribute of the model class that functions as the property
declaration (Player.level). With a little Python magic, applying the comparison
operator and value to this attribute results in a filter expression that the filter()
method understands. By referring to the class attribute directly in the code, ndb pro‐
vides a bit of code safety, validating that you’re using a real model class, a declared
attribute, and the correct value type.

You specify multiple filters by calling the filter() method multiple times. An entity
must meet all filter criteria in order to be a result for the query. That is, filters have a
logical AND relationship with one another:

q = q.filter(Player.level > 5)
q = q.filter(Player.level < 20)

For convenience, the filter() method returns the Query object, so you can chain
multiple calls to filter() in a single line:

q = q.filter(Player.level > 5).filter(Player.level < 20)

The filter() method supports the equality (==) operator and the four inequality
operators (<, <=, >, and >=). The Query class also supports the != (not equal) and IN
operators. These are not primitive datastore query operators: instead, the query
library executes these operators by performing multiple datastore queries then aggre‐
gating the results.

To apply a sort order, you call the order() method. As with filter(), this returns a
new Query object derived from the original. This method takes one argument, the
property to sort by, in the form of a reference to the class attribute. By default, the
sort will be in ascending order. To sort by the property in descending order, use the
unary negation operator on the property:

The Query API | 147

www.it-ebooks.info

http://www.it-ebooks.info/

q = q.order(Player.level)

q = q.order(-Player.score)

The datastore can sort query results by multiple properties. First, it sorts by the prop‐
erty and order from the first call to order(), then it sorts entities with equal values
for the first property, using the second order, and so on. For example, the following
sorts first by level ascending, then by score descending:

q = q.order(Player.level).order(-Player.score)

The query engine supports limiting the number of results returned, and skipping
ahead a number of results. You specify the limit and offset when you retrieve the
results, described later.

The property name used in an ndb filter or sort order expression
refers to the property declaration stored as an attribute of the
model class. When using the ndb.Expando base class, you can have
properties on an entity that are not declared in this way. To refer to
these properties in a filter or sort order expression, you can instan‐
tiate a temporary declaration using the ndb.GenericProperty()
constructor:

class Document(ndb.Expando):
 pass

...
 q = Document.query()

 q = q.filter(ndb.GenericProperty('category')
 == 'biology')

AND and OR clauses

Setting multiple filters on a Query object is logically equivalent to combining each of
the filters with a logical AND operator. You can state this more explicitly in the API
using the ndb.AND() combination:

q = Player.query()
q = q.filter(Player.level > 5)
q = q.filter(Player.level < 20)

q = Player.query(ndb.AND(Player.level > 5,
 Player.level < 20))

The ndb.AND() function takes two clauses. Either of these clauses can be another
ndb.AND() expression.

This is mostly useful when combined with the ndb.OR() function, which forms a log‐
ical OR relationship between two clauses:

148 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

q = Player.query(ndb.OR(ndb.AND(Player.level > 5,
 Player.level < 20),
 ndb.AND(Player.charclass == 'mage'),
 Player.level > 3))

This query asks for Player entities that either have a level between 5 and 20, or are of
a character class of 'mage' and have a level greater than 3.

The datastore does not support logical OR natively. Instead, ndb normalizes the total
logical expression into a form that can be expressed as multiple primitive queries that
use only logical AND operators. It then makes multiple calls to the datastore and
aggregates the results.

Notice that complex logical expressions may require many primitive datastore queries
to perform. This can impact performance. Nevertheless, ndb.OR() is sometimes con‐
venient.

GQL
ndb also supports a more succinct way to formulate queries: a text-based query lan‐
guage called GQL. This language is intended to resemble SQL, the query language of
relational databases. It supports only the features of the datastore’s query engine, and
therefore lacks many features common to SQL. But it is expressive and concise
enough to be useful for datastore queries.

Say we have entities of the kind Player representing players in an online role-playing
game. The following GQL query retrieves all Player entities whose “level” property is
an integer between 5 and 20, sorted by level in ascending order, then by score in
descending order:

SELECT * FROM Player
 WHERE level >= 5
 AND level <= 20
 ORDER BY level ASC, score DESC

In Python code, you create the query object from a GQL statement using the
ndb.gql() function:

q = ndb.gql("""SELECT * FROM Player
 WHERE level > 5
 AND level < 20
 ORDER BY level ASC, score DESC""")

Alternatively, you can call the gql() method on the model class, omitting the SELECT
* FROM Kind from the string as this is implied by the use of the method:

q = Player.gql("""WHERE level > 5
 AND level < 20
 ORDER BY level ASC, score DESC""")

The Query API | 149

www.it-ebooks.info

http://www.it-ebooks.info/

The first part of the SQL-like syntax in the preceding GQL query, SELECT * FROM
Player, says that the datastore should return complete entities as results, and that it
should only consider entities of the kind Player. This is the most common kind of
query. Unlike a SQL database, the datastore cannot “join” properties from entities of
multiple kinds into a single set of results. Only one kind can appear after the FROM.

Despite its similarity with SQL, GQL can only represent queries, and cannot perform
updates, inserts, or deletes. In other words, every GQL query begins with SELECT.

The rest of the query syntax also resembles SQL, and translates directly to filters and
sort orders. The WHERE clause, if present, represents one or more filter conditions,
separated by AND. The ORDER BY clause, if present, represents one or more sort orders,
separated by commas, applied from left to right.

Each condition in a WHERE clause consists of the name of a property, a comparison
operator, and a value. You can also specify a condition that matches an entity’s ID or
key name by using the reserved name __key__ like a property name. (That’s two
underscores, the word “key,” and two underscores.)

The datastore query engine supports five comparison operators for filters: =, <, <=, >,
and >=. GQL also supports two additional operators: !=, meaning “not equal to,” and
IN, which tests that the value equals any in a set of values.

With ndb, the equality operator is the Python equality operator:
Player.level == 5. In GQL, the equality operator is a single =
similar to SQL: SELECT * FROM Player WHERE level = 5.

For IN, the values are represented by a comma-delimited list of values surrounded by
parentheses:

SELECT * FROM Player WHERE level IN (5, 6, 7)

Internally, GQL translates the != and IN operators into multiple datastore queries that
have the same effect. If a query contains an IN clause, the query is evaluated once for
each value in the clause, using an = filter. The results of all the queries are aggregated.
The != operator performs the query once using a < filter and once using a >, then
aggregates the results. Using these operators more than once in a GQL statement
requires a query for each combination of the required queries, so be judicious in their
use.

The WHERE clause is equivalent to one or more filters. It is not like SQL’s WHERE clause,
and does not support arbitrary logical expressions. In particular, GQL does not sup‐
port testing the logical OR of two conditions.

150 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

The value on the righthand side of a condition can be a literal value that appears
inside the query string. Seven of the datastore value types have string literal represen‐
tations, as shown in Table 7-1.

Table 7-1. GQL value literals for datastore types

Type Literal syntax Examples

String Single-quoted string; escape the quote by doubling it 'Haven''t You Heard'

Integer or float Sign, digits; float uses decimal point -7 3.14

Boolean True or false keywords TRUE FALSE

Date-time,
date or time

Type, and value as numbers or a string

DATETIME(year, month, day, hour,

minute, second)

DATETIME('YYYY-MM-DD HH:MM:SS')

DATE(year, month, day)

DATE('YYYY-MM-DD')

TIME(hour, minute, second)

TIME('HH:MM:SS')

DATETIME(1999, 12, 31, 23,

59, 59)

DATETIME('1999-12-31

23:59:59')

DATE(1999, 12, 31)

DATE('1999-12-31')

TIME(23, 59, 59)

TIME('23:59:59')

Entity key Entity kind, and name or ID; can be a path

KEY('kind', 'name'/id)

KEY('kind', 'name'/id, 'kind', 'name'/

id, ...)

KEY('Player', 1287)

User object User('email-address') User('edward@example.com')

GeoPt object GEOPT(lat, long) GEOPT(37.4219, -122.0846)

The type of a filter’s value is significant in a datastore query. If you use the wrong type
for a value, such as by specifying a 'string_key' when you meant to specify a
KEY(kind, key_name), your query may not return the results you intend, or may
unexpectedly return no results.

A GQL query can specify a LIMIT, a maximum number of results to return. A query
can also specify an OFFSET, a number of results to skip before returning the remain‐

The Query API | 151

www.it-ebooks.info

mailto:edward@example.com
http://www.it-ebooks.info/

ing results. The following example returns the third, fourth, and fifth results, and may
return fewer if the query has fewer than five results:

SELECT * FROM Player LIMIT 3 OFFSET 2

GQL keywords, shown here in uppercase, are case insensitive. Kind and property
names, however, are case sensitive.

As with SQL statements in code, it is not always safe to include query values directly
in the query string, especially if those values come from outside sources. You don’t
want values to be accidentally (or maliciously) mistaken for GQL syntax characters.
This is less of an issue for GQL than for SQL (since GQL statements can only perform
queries and cannot modify data) but it’s still good practice to isolate values from the
query string.

To specify values separately from the query string, you use parameter substitution.
With parameter substitution, the query string contains a placeholder with either a
number or a name, and the actual value is passed to gql() as either a positional argu‐
ment or a keyword argument. The number or name appears in the query string pre‐
ceded by a colon (:1 or :argname):

q = ndb.gql("""SELECT * FROM Player
 WHERE level > :1
 AND level < :2""",
 5, 20)

q = ndb.gql("""SELECT * FROM Player
 WHERE level > :min_level
 AND level < :max_level""",
 min_level=5, max_level=20)

One advantage to parameter substitution is that each argument value is of the appro‐
priate datastore type, so you don’t need to bother with the string syntax for specifying
typed values.

You can rebind new values to a GQL query by using parameter substitution after the
query object has been instantiated using the bind() method. This means you can
reuse the query multiple times for different values. This saves time because the query
string only needs to be parsed once. The bind() method takes the new values as
either positional arguments or keyword arguments, and returns a new query object
with parameters bound.

You can save more time by caching parameterized query objects in global variables.
This way, the query string is parsed only when a server loads the application for the
first time, and the application reuses the object for all subsequent calls handled by
that server:

_LEADERBOARD_QUERY = ndb.gql(
 """SELECT * FROM Player

152 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

 WHERE level > :min_level
 AND level < :max_level
 ORDER BY level ASC, score DESC""")

class LeaderboardHandler(webapp.RequestHandler):
 def get(self):
 q = _LEADERBOARD_QUERY.bind(min_level=5, max_level=20)
 # ...

You can use GQL to perform queries from the Cloud Console. In
the sidebar, expand Storage, Cloud Datastore, Query. Locate the
dropdown menu that reads “Query by kind,” then change it to
“Query using GQL.” Enter the GQL statement, then click the Run
button to run it.
Note that to perform a query in the Console, the app must already
have an index that corresponds to the query. We’ll discuss indexes
throughout this chapter.

Retrieving Results
Once you have a query object configured with filters, sort orders, and value bindings
(in the case of GQL), you can execute the query, using one of several methods. The
query is not executed until you call one of these methods, and you can call these
methods repeatedly on the same query object to re-execute the query and get new
results.

The fetch() method returns a number of results, up to a specified limit. fetch()
returns a list of entity objects, which are instances of the kind class:

q = ndb.Player.query().order(-Player.score)

results = q.fetch(10)

When serving web requests, it’s always good to limit the amount of data the datastore
might return, so an unexpectedly large result set doesn’t cause the request handler to
exceed its deadline. The fetch() method requires an argument specifying the num‐
ber of results to fetch (the limit argument).

The fetch() method also accepts an optional offset parameter. If provided, the
method skips that many results, then returns subsequent results, up to the specified
limit:

q = ndb.Player.query().order(-Player.score)

results = q.fetch(10, offset=20)

With GQL, the fetch result limit and offset are equivalent to the LIMIT and OFFSET
that can be specified in the query string itself. The arguments to fetch() override

The Query API | 153

www.it-ebooks.info

http://www.it-ebooks.info/

those specified in the GQL statement. The limit argument to fetch() is required, so
it always overrides a GQL LIMIT clause.

In order to perform a fetch with an offset, the datastore must find
the first result for the query and then scan down the index to the
offset. The amount of time this takes is proportional to the size of
the offset, and may not be suitable for large offsets.
If you just want to retrieve results in batches, such as for a pagina‐
ted display, there’s a better way: query cursors. For information on
cursors, see “Query Cursors” on page 182.

It’s common for an app to perform a query expecting to get just one result, or noth‐
ing. You can do this with fetch(1), and then test whether the list it returns is empty.
For convenience, the query object also provides a get() method, which returns either
the first result, or None if the query did not return any results:

q = ndb.Player.query().filter(Player.name == 'django97')

player = q.get()
if player:
 # ...

The count() method executes the query, then returns the number of results that
would be returned instead of the results themselves. count() must perform the query
to count the results in the index, and so takes time proportional to what it is count‐
ing. count() accepts a limit as a parameter, and providing one causes the method to
return immediately once that many results have been counted:

q = ndb.Player.query().filter(Player.level > 10)
if q.count(100) == 100:
 # 100 or more players are above level 10.

To test whether a query would return a result, without retrieving
any results:

if q.count(1) == 1:
 # The query has at least one result.

Query objects provide one other mechanism for retrieving results, and it’s quite pow‐
erful. In the Python API, query objects are iterable. If you use the object in a context
that accepts iterables, such as in a for loop, the object executes the query, then pro‐
vides a Python standard iterator that returns each result one at a time, starting with
the first result:

q = ndb.Player.query().order(-Player.score)

154 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

for player in q:
 # ...

As the app uses the iterator, the iterator fetches the results in small batches. The itera‐
tor will not stop until it reaches the last result. It’s up to the app to stop requesting
results from the iterator (to break from the for loop) when it has had enough.

Treating the query object as an iterable uses default options for the query. If you’d like
to specify options but still use the iterable interface, call the iter() method. This
method takes the same options as fetch(), but returns the batch-loading iterator
instead of the complete list of results.

Unlike fetch(), the limit argument is optional for iter(). But it’s useful! With the
limit argument, results are fetched in batches with the iterator interface, but the
query knows to stop fetching after reaching the limit:

for player in q.iter(limit=100):
 # ...

This is especially useful for passing the iterator to a template, which may not have a
way to stop the iteration on its own.

You can adjust the size of the batches fetched by the iterator interface by passing the
batch_size argument to the iter() method. The default is 20 results per batch.

Keys-Only Queries
Instead of returning complete entities, the datastore can return just the keys of the
entities that match the query. This can be useful in cases when a component only
needs to know which entities are results, and doesn’t need the results themselves. The
component can store the keys for later retrieval of the entities, or pass the keys
to other components, or perform further operations on the key list before fetching
entities.

You can query for keys by passing the keys_only=True argument to fetch() or
iter():

q = ndb.Player.query()
for result_key in q.iter(keys_only=True):
 # ...

GQL also supports special syntax for keys-only queries, using SELECT __key__ (that’s
two underscores, the word “key,” and two more underscores) in place of SELECT *:

q = ndb.gql('SELECT __key__ FROM Player')
for result_key in q:
 # ...

When performing a keys-only query, each result returned by the query object is a Key
object instead of an instance of the model class.

The Query API | 155

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Indexes
For every query an application performs, Cloud Datastore maintains an index, a sin‐
gle table of possible answers for the query. Specifically, it maintains an index for a set
of queries that use the same filters and sort orders, possibly with different values for
the filters. Consider the following simple query:

SELECT * FROM Player WHERE name = 'druidjane'

To perform this query, Cloud Datastore uses an index containing the keys of every
Player entity and the value of each entity’s name property, sorted by the name prop‐
erty values in ascending order. Such an index is illustrated in Figure 7-1.

Figure 7-1. An index of Player entity keys and “name” property values, sorted by name
in ascending order, with the result for WHERE name = druidjane

To find all entities that meet the conditions of the query, Cloud Datastore finds the
first row in the index that matches, then it scans down to the first row that doesn’t
match. It returns the entities mentioned on all rows in this range (not counting the
nonmatching row), in the order they appear in the index. Because the index is sorted,
all results for the query are guaranteed to be on consecutive rows in the table.

Cloud Datastore would use this same index to perform other queries with a similar
structure but different values, such as the following query:

SELECT * FROM Player WHERE name = 'duran89'

This query mechanism is fast, even with a very large number of entities. Entities and
indexes are distributed across multiple machines, and each machine scans its own
index in parallel with the others. Each machine returns results to Cloud Datastore as
it scans its own index, and Cloud Datastore delivers the final result set to the app, in
order, as if all results were in one large index.

156 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

Another reason queries are fast has to do with how the datastore finds the first
matching row. Because indexes are sorted, the datastore can use an efficient algorithm
to find the first matching row. In the common case, finding the first row takes
approximately the same amount of time regardless of the size of the index. In other
words, the speed of a query is not affected by the size of the data set.

Cloud Datastore updates all relevant indexes when property values change. In this
example, if an application retrieves a Player entity, changes the name, and then saves
the entity with a call to the put() method, Cloud Datastore updates the appropriate
row in the previous index. It also moves the row if necessary so the ordering of the
index is preserved.

Similarly, if the application creates a new Player entity with a name property, or dele‐
tes a Player entity with a name property, Cloud Datastore updates the index. In con‐
trast, if the application updates a Player but does not change the name property, or
creates or deletes a Player that does not have a name property, Cloud Datastore does
not update the name index because no update is needed.

Cloud Datastore maintains two indexes like the previous example for every property
name and entity kind, one with the property values sorted in ascending order and
one with values in descending order. Cloud Datastore also maintains an index of enti‐
ties of each kind. These indexes satisfy some simple queries, and Cloud Datastore also
uses them internally for bookkeeping purposes.

For other queries, you must tell Cloud Datastore which indexes to prepare. You do
this using a configuration file named index.yaml, which gets uploaded along with
your application’s code.

It’d be a pain to write this file by hand, but thankfully you don’t have to. While you’re
testing your application in the development web server from the SDK, when the app
performs a datastore query, the server checks that the configuration file has an appro‐
priate entry for the needed index. If it doesn’t find one, it adds one. As long as the app
performs each of its queries at least once during testing, the resulting configuration
file will be complete.

The index configuration file must be complete, because when the app is running on
App Engine, if the application performs a query for which there is no index, the
query returns an error. You can tell the development web server to behave similarly if
you want to test for these error conditions. (How to do this depends on which SDK
you are using; see “Configuring Indexes” on page 189.)

Indexes require a bit of discipline to maintain. Although the development tools can
help add index configuration, they cannot know when an index is unused and can be
deleted from the file. Extra indexes consume storage space and slow down updates of
properties mentioned in the index. And while the version of the app you’re develop‐
ing may not need a given index, the version of the app still running on App Engine

Introducing Indexes | 157

www.it-ebooks.info

http://www.it-ebooks.info/

may still need it. The App Engine SDK and the Cloud Console include tools for
inspecting and maintaining indexes. We’ll look at these tools in Chapter 20.

Before we discuss index configuration, let’s look more closely at how indexes support
queries. We just saw an example where the results for a simple query appear on con‐
secutive rows in a simple index. In fact, this is how most queries work: the results for
every query that would use an index appear on consecutive rows in the index. This is
both surprisingly powerful in some ways and surprisingly limited in others, and it’s
worth understanding why.

Automatic Indexes and Simple Queries
As we mentioned, Cloud Datastore maintains two indexes for every single property
of every entity kind, one with values in ascending order and one with values in
descending order. Cloud Datastore builds these indexes automatically, regardless of
whether they are mentioned in the index configuration file. These automatic indexes
satisfy the following kinds of queries using consecutive rows:

• A simple query for all entities of a given kind, no filters or sort orders
• One filter on a property using the equality operator (=)
• Filters using greater-than, greater-than or equal to, less-than, or less-than or

equal to operators (>, >=, <, <=) on a single property
• One sort order, ascending or descending, and no filters, or with filters only on

the same property used with the sort order
• Filters or a sort order on the entity key
• Kindless queries with or without key filters

Let’s look at each of these in action.

All Entities of a Kind
The simplest datastore query asks for every entity of a given kind, in any order. Stated
in GQL, a query for all entities of the kind Player looks like this:

SELECT * FROM Player

158 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-2. An index of all Player entity keys, with results for SELECT * FROM Player

Cloud Datastore maintains an index mapping kinds to entity keys. This index is sor‐
ted using a deterministic ordering for entity keys, so this query returns results in “key
order.” The kind of an entity cannot be changed after it is created, so this index is
updated only when entities are created and deleted.

Because a query can only refer to one kind at a time, you can imagine this index as
simply a list of entity keys for each kind. Figure 7-2 illustrates an example of this
index.

When the query results are fetched, Cloud Datastore uses the entity keys in the index
to find the corresponding entities, and returns the full entities to the application.

One Equality Filter
Consider the following query, which asks for every Player entity with a level prop‐
erty with a value of the integer 10:

SELECT * FROM Player WHERE level = 10

This query uses an index of Player entities with the level property, ascending—one
of the automatic indexes. It uses an efficient algorithm to find the first row with a
level equal to 10. Then it scans down the index until it finds the first row with a
level not equal to 10. The consecutive rows from the first matching to the last
matching represent all the Player entities with a level property equal to the integer
10. This is illustrated in Figure 7-3.

Automatic Indexes and Simple Queries | 159

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-3. An index of the Player entity “level” properties, sorted by level then by key,
with results for WHERE level = 10

Greater-Than and Less-Than Filters
The following query asks for every Player entity with a score property whose value
is greater than the integer 500:

SELECT * FROM Player WHERE score > 500

This uses an index of Player entities with the score property, ascending, also an
automatic index. As with the equality filter, it finds the first row in the index whose
score is greater than 500. In the case of greater-than, because the table is sorted by
score in ascending order, every row from this point to the bottom of the table is a
result for the query. See Figure 7-4.

Similarly, consider a query that asks for every Player with a score less than 1,000:

SELECT * FROM Player WHERE score < 1000

Cloud Datastore uses the same index (score, ascending), and the same strategy: it
finds the first row that matches the query, in this case the first row. Then it scans to
the next row that doesn’t match the query, the first row whose score is greater than or
equal to 1000. The results are represented by everything above that row.

Finally, consider a query for score values between 500 and 1,000:

SELECT * FROM Player WHERE score > 500 AND score < 1000

160 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-4. An index of the Player entity “score” properties, sorted by score then by key,
with results for WHERE score > 500

Once again, the same index and strategy prevail: Cloud Datastore scans from the top
down, finding the first matching and next nonmatching rows, returning the entities
represented by everything in between. This is shown in Figure 7-5.

If the values used with the filters do not represent a valid range, such as score < 500
AND score > 1000, the query planner notices this and doesn’t bother performing a
query, as it knows the query has no results.

One Sort Order
The following query asks for every Player entity, arranged in order by level, from
lowest to highest:

SELECT * FROM Player ORDER BY level

As before, this uses an index of Player entities with level properties in ascending
order. If both this query and the previous equality query were performed by the
application, both queries would use the same index. This query uses the index to
determine the order in which to return Player entities, starting at the top of the table
and moving down until the application stops fetching results, or until the bottom of
the table. Recall that every Player entity with a level property is mentioned in this
table. See Figure 7-6.

Automatic Indexes and Simple Queries | 161

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-5. An index of the Player entity “score” properties, sorted by score, with results
for WHERE score > 500 AND score < 1000

Figure 7-6. An index of the Player entity “level” properties sorted by level in ascending
order, with results for ORDER BY level

162 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

The following query is similar to the previous one, but asks for the entities arranged
by level from highest to lowest:

SELECT * FROM Player ORDER BY level DESC

This query cannot use the same index as before, because the results are in the wrong
order. For this query, the results should start at the entity with the highest level, so the
query needs an index where this result is in the first row. Cloud Datastore provides an
automatic index for single properties in descending order for this purpose. See
Figure 7-7.

Figure 7-7. An index of the Player entity “level” properties sorted by level in descending
order, with results for ORDER BY level DESC

If a query with a sort order on a single property also includes filters on that property,
and no other filters, Cloud Datastore still needs only the one automatic index to fulfill
the query. In fact, you may have noticed that for these simple queries, the results
are returned sorted by the property in ascending order, regardless of whether the
query specifies the sort order explicitly. In these cases, the ascending sort order is
redundant.

Queries on Keys
In addition to filters and sort orders on properties, you can also perform queries with
filters and sort orders on entity keys. You can refer to an entity’s key in a filter or sort
order using the special name __key__.

An equality filter on the key isn’t much use. Only one entity can have a given key, and
if the key is known, it’s faster to perform a key.get() than a query. But an inequality
filter on the key can be useful for fetching ranges of keys. (If you’re fetching entities in
batches, consider using query cursors. See “Query Cursors” on page 182.)

Automatic Indexes and Simple Queries | 163

www.it-ebooks.info

http://www.it-ebooks.info/

Cloud Datastore provides automatic indexes of kinds and keys, sorted by key in
ascending order. The query returns the results sorted in key order. This order isn’t
useful for display purposes, but it’s deterministic. A query that sorts keys in descend‐
ing order requires a custom index.

Cloud Datastore uses indexes for filters on keys in the same way as filters on proper‐
ties, with a minor twist: a query using a key filter in addition to other filters can use
an automatic index if a similar query without the key filter could use an automatic
index. Automatic indexes for properties already include the keys, so such queries can
just use the same indexes. And of course, if the query has no other filters beyond the
key filter, it can use the automatic key index.

Kindless Queries
In addition to performing queries on entities of a given kind, the datastore lets you
perform a limited set of queries on entities of all kinds. Kindless queries cannot use
filters or sort orders on properties. They can, however, use equality and inequality fil‐
ters on keys (IDs or names).

Kindless queries are mostly useful in combination with ancestors, which we’ll discuss
in Chapter 8. They can also be used to get every entity in the datastore. (If you’re
querying a large number of entities, you’ll probably want to fetch the results in
batches. See “Query Cursors” on page 182.)

Using the Query class, you perform a kindless query by omitting the model class
argument from the constructor:

q = ndb.Query()

q = q.filter('__key__ >', last_key)

In GQL, you specify a kindless query by omitting the FROM Kind part of the state‐
ment:

q = ndb.gql('SELECT * WHERE __key__ > :1', last_key)

The results of a kindless query are returned in key order, ascending. Kindless queries
use an automatic index.

164 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

The datastore maintains statistics about the apps data in a set of
datastore entities. When the app performs a kindless query, these
statistics entities are included in the results. The kind names for
these entities all begin with the characters __Stat_ (two under‐
scores, the word “Stat,” and another underscore). Your app will
need to filter these out if they are not desired.
The ndb interface expects there to be an ndb.Model (or
ndb.Expando) class defined or imported for each kind of each
query result. When using kindless queries, you must define or
import all possible kinds. To load classes for the datastore statistics
entity kinds, import the ndb.stats module:

from google.appengine.ext.ndb import stats

For more information about datastore statistics, see “Accessing
Metadata from the App” on page 249.

Custom Indexes and Complex Queries
All queries not covered by the automatic indexes must have corresponding indexes
defined in the app’s index configuration file. We’ll refer to these as “custom indexes,”
in contrast with “automatic indexes.” Cloud Datastore needs these hints because
building every possible index for every combination of property and sort order would
take a gargantuan amount of space and time, and an app isn’t likely to need more
than a fraction of those possibilities.

In particular, the following queries require custom indexes:

• A query with multiple sort orders
• A query with an inequality filter on a property and filters on other properties
• Projection queries

A query that uses just equality filters on properties does not need a custom index in
most cases thanks to a specialized query algorithm for this case, which we’ll look at in
a moment. Also, filters on keys do not require custom indexes; they can operate on
whatever indexes are used to fulfill the rest of the query.

Let’s examine these queries and the indexes they require. We’ll cover projection quer‐
ies in “Projection Queries” on page 186.

Multiple Sort Orders
The automatic single-property indexes provide enough information for one sort
order. When two entities have the same value for the sorted property, the entities
appear in the index in adjacent rows, ordered by their entity keys. If you want to
order these entities with other criteria, you need an index with more information.

Custom Indexes and Complex Queries | 165

www.it-ebooks.info

http://www.it-ebooks.info/

The following query asks for all Player entities, sorted first by the level property in
descending order, then, in the case of ties, sorted by the score property in descending
order:

SELECT * FROM Player ORDER BY level DESC, score DESC

The index this query needs is straightforward: a table of Player entity keys, level
values, and score values, sorted according to the query. This is not one of the indexes
provided by the datastore automatically, so it is a custom index, and must be men‐
tioned in the index configuration file. If you performed this query in the development
web server, the server would add the following lines to the index.yaml file:

- kind: Player
 properties:
 - name: level
 direction: desc
 - name: score
 direction: desc

The order the properties appear in the configuration file matters. This is the order in
which the rows are sorted: first by level descending, then by score descending.

This configuration creates the index shown in Figure 7-8. The results appear in the
table, and are returned for the query in the desired order.

Figure 7-8. An index of the Player entity “level” and “score” properties, sorted by level
descending, then score descending, then by key ascending

Filters on Multiple Properties
Consider the following query, which asks for every Player with a level greater than
the integer 10 and a charclass of the string 'mage':

SELECT * FROM Player WHERE charclass = 'mage' AND level > 10

166 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

To be able to scan to a contiguous set of results meeting both filter criteria, the index
must contain columns of values for these properties. The entities must be sorted first
by charclass, then by level.

The index configuration for this query would appear as follows in the index.yaml file:

- kind: Player
 properties:
 - name: charclass
 direction: asc
 - name: level
 direction: asc

This index is illustrated in Figure 7-9.

Figure 7-9. An index of the Player entity “charclass” and “level” properties, sorted by
charclass, then level, then key, with results for WHERE charclass = “mage” AND level
> 10

The ordering sequence of these properties is important! Remember: the results for
the query must all appear on adjacent rows in the index. If the index for this query
were sorted first by level then by charclass, it would be possible for valid results to
appear on nonadjacent rows. Figure 7-10 demonstrates this problem.

The index ordering requirement for combining inequality and equality filters has sev‐
eral implications that may seem unusual when compared to the query engines of
other databases. Heck, they’re downright weird. The first implication, illustrated pre‐
viously, can be stated generally:

Custom Indexes and Complex Queries | 167

www.it-ebooks.info

http://www.it-ebooks.info/

The First Rule of Inequality Filters: If a query uses inequality filters on one property
and equality filters on one or more other properties, the index must be ordered first by
the properties used in equality filters, then by the property used in the inequality
filters.

This rule has a corollary regarding queries with both an inequality filter and sort
orders. Consider the following possible query:

SELECT * FROM Player WHERE level > 10 ORDER BY score DESC

Figure 7-10. An index of the Player entity “charclass” and “level” properties, sorted first
by level then by charclass, which cannot satisfy WHERE charclass = “mage” AND level >
10 with consecutive rows

What would the index for this query look like? For starters, it would have a column
for the level, so it can select the rows that match the filter. It would also have a col‐
umn for the score, to determine the order of the results. But which column is
ordered first?

The First Rule implies that level must be ordered first. But the query requested that
the results be returned sorted by score, descending. If the index were sorted by
score, then by level, the rows may not be adjacent.

To avoid confusion, Cloud Datastore requires that the correct sort order be stated
explicitly in the query:

SELECT * FROM Player WHERE level > 10 ORDER BY level, score DESC

168 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

In general:
The Second Rule of Inequality Filters: If a query uses inequality filters on one prop‐
erty and sort orders of one or more other properties, the index must be ordered first by
the property used in the inequality filters (in either direction), then by the other
desired sort orders. To avoid confusion, the query must state all sort orders explicitly.

There’s one last implication to consider with regard to inequality filters. The follow‐
ing possible query attempts to get all Player entities with a level less than 10 and a
score less than 500:

SELECT * FROM Player WHERE level < 10 AND score < 500

Consider an index ordered first by level, then by score, as shown in Figure 7-11.

Figure 7-11. Neither possible index of the Player entity “level” and “score” properties can
satisfy WHERE level < 10 AND score < 500 with consecutive rows

In fact, there is no possible index that could satisfy this query completely using con‐
secutive rows. This is not a valid datastore query.

The Third Rule of Inequality Filters: A query cannot use inequality filters on more
than one property.

A query can use multiple inequality filters on the same property, such as to test for a
range of values.

Multiple Equality Filters
For queries using just equality filters, it’s easy to imagine custom indexes that satisfy
them. For instance:

SELECT * FROM Player WHERE charclass = 'mage' AND level = 10

A custom index containing these properties, ordered in any sequence and direction,
would meet the query’s requirements. But Cloud Datastore has another trick up its

Custom Indexes and Complex Queries | 169

www.it-ebooks.info

http://www.it-ebooks.info/

sleeve for this kind of query. For queries using just equality filters and no sort orders,
instead of scanning a single table of all values, Cloud Datastore can scan the auto‐
matic single-property indexes for each property, and return the results as it finds
them. Cloud Datastore can perform a “merge join” of the single-property indexes to
satisfy this kind of query.

In other words, the datastore doesn’t need a custom index to perform queries using
just equality filters and no sort orders. If you add a suitable custom index to your
configuration file, the datastore will use it. But a custom index is not required, and
the development server’s automatic index configuration feature will not add one if it
doesn’t exist.

Let’s consider how the algorithm would perform the following query, using single-
property indexes:

SELECT * FROM Kind WHERE a = 1 AND b = 2 AND c = 3

Recall that each of these tables contains a row for each entity with the property set,
with fields for the entity’s key and the property’s value. The table is sorted first by the
value, then by the key. The algorithm takes advantage of the fact that rows with the
same value are consecutive, and within that consecutive block, rows are sorted by key.

To perform the query, the datastore uses the following steps:

1. The datastore checks the a index for the first row with a value of 1. The entity
whose key is on this row is a candidate, but not yet a confirmed result.

2. It then checks the b index for the first row whose value is 2 and whose key is
greater than or equal to the candidate’s key. Other rows with a value of 2 may
appear above this row in the b index, but the datastore knows those are not can‐
didates because the first a scan determined the candidate with the smallest key.

3. If the datastore finds the candidate’s key in the matching region of b, that key is
still a candidate, and the datastore proceeds with a similar check in the index for
c. If the datastore does not find the candidate in the b index but does find
another larger key with a matching value, that key becomes the new candidate,
and it proceeds to check for the new candidate in the c index. (It’ll eventually go
back to check a with the new candidate before deciding it is a result.) If it finds
neither the candidate nor a matching row with a larger key, the query is com‐
plete.

4. If a candidate is found to match all criteria in all indexes, the candidate is
returned as a result. The datastore starts the search for a new candidate, using the
previous candidate’s key as the minimum key.

Figure 7-12 illustrates this zigzag search across the single-property indexes, first with
a failed candidate, then two successful candidates.

170 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

A key feature of this algorithm is that it finds results in the order in which they are to
be returned: key order. The datastore does not need to compile a complete list of pos‐
sible results for the query—possibly millions of entities—and sort them to determine
which results ought to be first. Also, the datastore can stop scanning as soon as it has
enough results to fulfill the query, which is always a limited number of entities.

Of course, this query could also use a custom index with all the filter properties in it.
If you provide configuration for such an index, the query will use the custom index
instead of doing the zigzag join. This can result in a query faster than the zigzag join,
at the expense of added time to update the indexed entities.

Figure 7-12. The merge join algorithm finding two entities WHERE a = 1 AND b = 2
AND c = 3

A zigzag-capable query using equality filters on properties can also use inequality fil‐
ters on keys without needing a custom index. This is useful for fetching a large num‐

Custom Indexes and Complex Queries | 171

www.it-ebooks.info

http://www.it-ebooks.info/

ber of results in key ranges. (But if you’re fetching batches, cursors might be more
effective. See “Query Cursors” on page 182.)

Not-Equal and IN Filters
The query API supports two operators we haven’t discussed yet: != (not-equal) and
IN. These operators are not actually supported by the datastore itself. Instead, they are
implemented by the datastore API as multiple queries in terms of the other operators.

The filter prop != value matches every entity whose property does not equal the
value. The datastore API determines the result set by performing two queries: one
using prop < value in place of the not-equal filter, and one using prop > value in
place of the filter. It returns both sets of results as one result set, which it can do rea‐
sonably quickly because the results are already in order.

Because not-equal is actually implemented in terms of the inequality operators, it is
subject to the three rules of inequality operators:

• The query’s index must be ordered by the property used with the not-equal filter
before other sort orders.

• If the query uses other explicit sort orders, the not-equal filter’s property must be
explicitly ordered first.

• And finally, any query using a not-equal filter cannot also use inequality or not-
equal filters on other properties.

A not-equal filter will never return an entity that doesn’t have the filtered property.
This is true for all filters, but can be especially counterintuitive in the case of not-
equal.

To use the not-equal filter in an ndb query expression, simply use Python’s != opera‐
tor:

q = Player.query().filter(Player.charclass != 'mage')

The filter prop IN (value1, value2, value3) matches every entity whose property
equals any of the values. The datastore API implements this as a series of equality
queries, one for each value to test. The more values that appear in the list, the longer
the full set of queries will take to execute.

With ndb, you specify the IN operator using the IN() method of the property declara‐
tion:

q = Player.query().filter(Player.charclass.IN(['mage', 'druid', 'warrior']))

If a single query includes multiple IN filters on multiple properties, the datastore API
must perform equality queries for every combination of values in all filters. prop1 IN

172 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

(value1, value2, value3, value4) AND prop2 IN (value5, value6, value7) is
equivalent to 12 queries using equality filters.

The != and IN operators are useful shortcuts. But because they actually perform mul‐
tiple queries, they take longer to execute than the other operators. It’s worth under‐
standing their performance implications before using them.

Unset and Nonindexed Properties
As you’ve seen, an index contains columns of property values. Typically, an app cre‐
ates entities of the same kind with the same set of properties: every Player in our
game has a name, a character class, a level, and a score. If every entity of a kind has a
given property, then an index for that kind and property has a row corresponding to
each entity of the kind.

But the datastore neither requires nor enforces a common layout of properties across
entities of a kind. It’s quite possible for an entity to not have a property that other
entities of the same kind have. For instance, a Player entity might be created without
a character class, and go without until the user chooses one.

It is possible to set a property with a null value (None), but a property set to the null
value is distinct from the property not being set at all. This is different from a tabular
database, which requires a value (possibly null) for every cell in a row.

If an entity does not have a property used in an index, the entity does not appear in
the index. Stated conversely, an entity must have every property mentioned in an
index to appear in the index. If a Player does not have a charclass property, it does
not appear in any index with a charclass column.

If an entity is not mentioned in an index, it cannot be returned as a result for a query
that uses the index. Remember that queries use indexes for both filters and sort
orders. A query that uses a property for any kind of filter or any sort order can never
return an entity that doesn’t have that property. The charclass-less Player can never
be a result for a Player query that sorts results by charclass.

In “Strings, Text, and Bytes” on page 133, we mentioned that text and blob values are
not indexed. Another way of saying this is that, for the purposes of indexes, a prop‐
erty with a text or blob value is treated as if it is unset. If an app performs a query by
using a filter or sort order on a property that is always set to a text or blob value, that
query will always return no results.

It is sometimes useful to store property values of other types, and exempt them from
indexes. This saves space in index tables, and reduces the amount of time it takes to
save the entity.

Unset and Nonindexed Properties | 173

www.it-ebooks.info

http://www.it-ebooks.info/

The only way to declare a property as unindexed is with the ndb.Model API. There is
currently no other way to set a specific property as unindexed in this API. We’ll look
at this feature when we discuss the modeling API in Chapter 9.

If you need an entity to qualify as a result for a query, but it doesn’t make sense in
your data model to give the entity every property used in the query, use the null value
to represent the “no value” case, and always set it. The Python modeling API makes it
easy to ensure that properties always have values.

Sort Orders and Value Types
Cloud Datastore keeps the rows of an index sorted in an order that supports the cor‐
responding query. Each type of property value has its own rules for comparing two
values of the same type, and these rules are mostly intuitive: integers are sorted in
numeric order, strings in Unicode order, and so forth.

Two entities can have values of different types for the same property, so Cloud Data‐
store also has rules for comparing such values, although these rules are not so intu‐
itive. Values are ordered first by type, then within their type. For instance, all integers
are sorted above all strings.

One effect of this that might be surprising is that all floats are sorted below all inte‐
gers. The datastore treats floats and integers as separate value types, and so sorts them
separately. If your app relies on the correct ordering of numbers, make sure all num‐
bers are stored using the same type of value.

The datastore stores eight distinct types of values, not counting the nonindexed types
(text and blob). The datastore supports several additional types by storing them as
one of the eight types, then marshaling them between the internal representation and
the value your app sees automatically. These additional types are sorted by their inter‐
nal representation. For instance, a date-time value is actually stored as an integer, and
will be sorted among other integer values in an index. (When comparing date-time
values, this results in chronological order, which is what you would expect.)

Table 7-2 describes the eight indexable types supported by the datastore. The types
are listed in their relative order, from first to last.

Table 7-2. How the datastore value types are sorted

Data type Python type Ordering

The null value None -

Integer and date-time long, datetime.datetime Numeric (date-time is chronological)

Boolean bool (True or False) False, then true

174 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

Data type Python type Ordering

Byte string str Byte order

Unicode string unicode Unicode character order

Floating-point number float Numeric

Geographical point ndb.GeoPt By latitude, then longitude (floating-point numbers)

A Google account users.User By email address, Unicode order

Entity key ndb.Key Kind (byte string), then ID (numeric) or name (byte string)

Queries and Multivalued Properties
In a typical database, a field in a record stores a single value. A record represents a
data object, and each field represents a single, simple aspect of the object. If a data
object can have more than one of a particular thing, each of those things is typically
represented by a separate record of an appropriate kind, associated with the data
object by using the object’s key as a field value. Cloud Datastore supports both of
these uses of fields: a property can contain a simple value or the key of another entity.

But Cloud Datastore can do something most other databases can’t: it can store more
than one value for a single property. With multivalued properties (MVPs), you can
represent a data object with more than one of something without resorting to creat‐
ing a separate entity for each of those things, if each thing could be represented by a
simple value.

One of the most useful features of multivalued properties is how they match an
equality filter in a query. The datastore query engine considers a multivalued prop‐
erty equal to a filter value if any of the property’s values is equal to the filter value.
This ability to test for membership means MVPs are useful for representing sets.

Multivalued properties maintain the order of values, and can have repeated items.
The values can be of any datastore type, and a single property can have values of dif‐
ferent types.

MVPs in Code
Consider the following example. The players of our online game can earn trophies for
particular accomplishments. The app needs to display a list of all the trophies a player
has won, and the app needs to display a list of all the players who have won a particu‐
lar trophy. The app doesn’t need to maintain any data about the trophies themselves;

Queries and Multivalued Properties | 175

www.it-ebooks.info

http://www.it-ebooks.info/

it’s sufficient to just store the name of the trophy. (This could also be a list of keys for
trophy entities.)

One option is to store the list of trophy names as a single delimited string value for
each Player entity. This makes it easy to get the list of trophies for a particular player,
but impossible to get the list of players for a particular trophy. (A query filter can’t
match patterns within string values.)

Another option is to record each trophy win in a separate property named after the
trophy. To get the list of players with a trophy, you just query for the existence of the
corresponding property. However, getting the list of trophies for a given player would
require either coding the names of all the trophies in the display logic, or iterating
over all the Player entity’s properties looking for trophy names.

With multivalued properties, we can store each trophy name as a separate value for
the trophies property. To access a list of all trophies for a player, we simply access the
property of the entity. To get a list of all players with a trophy, we use a query with an
equality filter on the property.

In ndb, you can declare that a property is allowed to have multiple values by passing
the repeated=True argument to the property declaration:

class Player(ndb.Model):
 # ...
 trophies = ndb.StringProperty(repeated=True)

The value of the property is a list whose elements are of the appropriate type:

p = ndb.Key(Player, user_id).get()
p.trophies = ['Lava Polo Champion',
 'World Building 2008, Bronze',
 'Glarcon Fighter, 2nd class']
p.put()

...

List all trophies for a player.
p = ndb.Key(Player, user_id).get()
for trophy in p.trophies:
 # ...

Query all players that have a trophy.
q = Player.gql("WHERE trophies = :1").bind('Lava Polo Champion')
for p in q:
 # ...

As with nonrepeated properties, the declaration enforces the type for all values in the
list. To declare that a property can contain multiple values of various types, use
ndb.GenericProperty(repeated=True). Each member of the list must be of one of
the supported datastore types.

176 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

With the ndb.Expando base class, you can leave the property undeclared, and simply
assign a list value:

class Entity(ndb.Model):
 prop = ndb.GenericProperty(repeated=True)

e = Entity()
e.prop = ['value1', 123, users.get_current_user()]

Remember that list is not a datastore type; it is only the mechanism for manipulat‐
ing multivalued properties. A list cannot contain another list.

Within the datastore, a property must have at least one value, otherwise the property
does not exist (the property is unset). The property declaration knows how to trans‐
late between the empty list ([]) and the property being unset on an entity. If the
property is undeclared (on an ndb.Expando), the model class doesn’t know the differ‐
ence between an empty list value and an unset property, so it behaves as if the prop‐
erty is unset. Take care to handle this case when using ndb.Expando, undeclared
properties, and multiple values.

MVPs and Equality Filters
As you’ve seen, when a multivalued property is the subject of an equality filter in a
query, the entity matches if any of the property’s values are equal to the filter value:

e1 = Entity()
e1.prop = [3.14, 'a', 'b']
e1.put()

e2 = Entity()
e2.prop = ['a', 1, 6]
e2.put()

Returns e1 but not e2:
q = Entity.gql('WHERE prop = 3.14')

Returns e2 but not e1:
q = Entity.gql('WHERE prop = 6')

Returns both e1 and e2:
q = Entity.gql("WHERE prop = 'a'")

Recall that a query with a single equality filter uses an index that contains the keys of
every entity of the given kind with the given property and the property values. If an
entity has a single value for the property, the index contains one row that represents
the entity and the value. If an entity has multiple values for the property, the index
contains one row for each value. The index for this example is shown in Figure 7-13.

This brings us to the first of several odd-looking queries that nonetheless make sense
for multivalued properties. Because an equality filter is a membership test, it is possi‐

Queries and Multivalued Properties | 177

www.it-ebooks.info

http://www.it-ebooks.info/

ble for multiple equality filters to use the same property with different values and still
return a result. An example in GQL:

SELECT * FROM Entity WHERE prop = 'a' AND prop = 'b'

Figure 7-13. An index of two entities with multiple values for the “prop” property, with
results for WHERE prop = a

Cloud Datastore uses the “merge join” algorithm, described in “Multiple Equality Fil‐
ters” on page 169 for multiple equality filters, to satisfy this query, using the prop
single-property index. This query returns the e1 entity because the entity key appears
in two places in the index, once for each value requested by the filters.

The way multivalued properties appear in an index gives us another way of thinking
about multivalued properties: an entity has one or more properties, each with a name
and a single value, and an entity can have multiple properties with the same name.
The API represents the values of multiple properties with the same name as a list of
values associated with that name.

The datastore does not have a way to query for the exact set of values in a multivalued
property. You can use multiple equality filters to test that each of several values
belongs to the list, but there is no filter that ensures that those are the only values that
belong to the list, or that each value appears only once.

MVPs and Inequality Filters
Just as an equality filter tests that any value of the property is equal to the filter value,
an inequality filter tests that any value of the property meets the filter criterion:

e1 = Entity()
e1.prop = [1, 3, 5]
e1.put()

178 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

e2 = Entity()
e2.prop = [4, 6, 8]
e2.put()

Returns e1 but not e2:
q = Entity.gql("WHERE prop < 2")

Returns e2 but not e1:
q = Entity.gql("WHERE prop > 7")

Returns both e1 and e2:
q = Entity.gql("WHERE prop > 3")

Figure 7-14 shows the index for this example, with the results of prop > 3 highligh‐
ted.

Figure 7-14. An index of two entities with multiple values for the “prop” property, with
results for WHERE prop > 3

In the case of an inequality filter, it’s possible for the index scan to match rows for a
single entity multiple times. When this happens, the first occurrence of each key in
the index determines the order of the results. If the index used for the query sorts the
property in ascending order, the first occurrence is the smallest matching value. For
descending, it’s the largest. In this example, prop > 3 returns e2 before e1 because 4
appears before 5 in the index.

Queries and Multivalued Properties | 179

www.it-ebooks.info

http://www.it-ebooks.info/

MVPs and Sort Orders
To summarize things we know about how multivalued properties are indexed:

• A multivalued property appears in an index with one row per value.
• All rows in an index are sorted by the values, possibly distributing property val‐

ues for a single entity across the index.
• The first occurrence of an entity in an index scan determines its place in the

result set for a query.

Together, these facts explain what happens when a query orders its results by a multi‐
valued property. When results are sorted by a multivalued property in ascending
order, the smallest value for the property determines its location in the results. When
results are sorted in descending order, the largest value for the property determines
its location.

This has a counterintuitive—but consistent—consequence:

e1 = Entity()
e1.prop = [1, 3, 5]
e1.put()

e2 = Entity()
e2.prop = [2, 3, 4]
e2.put()

Returns e1, e2:
q = Entity.gql("ORDER BY prop ASC")

Also returns e1, e2:
q = Entity.gql("ORDER BY prop DESC")

Because e1 has both the smallest value and the largest value, it appears first in the
result set in ascending order and in descending order. See Figure 7-15.

180 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-15. Indexes of two entities with multiple values for the “prop” property, one
ascending and one descending

MVPs and the Query Planner
The query planner tries to be smart by ignoring aspects of the query that are redun‐
dant or contradictory. For instance, a = 3 AND a = 4 would normally return no
results, so the query planner catches those cases and doesn’t bother doing work it
doesn’t need to do. However, most of these normalization techniques don’t apply to
multivalued properties. In this case, the query could be asking, “Does this MVP have
a value that is equal to 3 and another value equal to 4?” The datastore remembers
which properties are MVPs (even those that end up with one or zero values), and
never takes a shortcut that would produce incorrect results.

But there is one exception. A query that has both an equality filter and a sort order on
the same property will drop the sort order. If a query asks for a = 3 ORDER BY a
DESC and a is a single-value property, the sort order has no effect because all values in
the result are identical. For an MVP, however, a = 3 tests for membership, and two
MVPs that meet that condition are not necessarily identical.

The datastore drops the sort order in this case anyway. To do otherwise would require
too much index data and result in exploding indexes in cases that could otherwise
survive. As always, the actual sort order is deterministic, but it won’t be the requested
order.

Queries and Multivalued Properties | 181

www.it-ebooks.info

http://www.it-ebooks.info/

Exploding Indexes
There’s one more thing to know about indexes when considering multivalued proper‐
ties for your data model.

When an entity has multiple values for a property, each index that includes a column
for the property must use multiple rows to represent the entity, one for each possible
combination of values. In a single property index on the multivalued property, this is
simply one row for each value, two columns each (the entity key and the property
value).

In an index of multiple properties where the entity has multiple values for one of the
indexed properties and a single value for each of the others, the index includes one
row for each value of the multivalued property. Each row has a column for each
indexed property, plus the key. The values for the single-value properties are repeated
in each row.

Here’s the kicker: if an entity has more than one property with multiple values, and
more than one multivalued property appears in an index, the index must contain one
row for each combination of values to represent the entity completely.

If you’re not careful, the number of index rows that need to be updated when the
entity changes could grow very large. It may be so large that the datastore cannot
complete an update of the entity before it reaches its safety limits, and returns an
error.

To help prevent “exploding indexes” from causing problems, Cloud Datastore limits
the number of property values—that is, the number of rows times the number of col‐
umns—a single entity can occupy in an index. The limit is 5,000 property values, high
enough for normal use, but low enough to prevent unusual index sizes from inhibit‐
ing updates.

If you do include a multivalued property in a custom index, be careful about the pos‐
sibility of exploding indexes.

Query Cursors
A query often has more results than you want to process in a single action. A message
board may have thousands of messages, but it isn’t useful to show a user thousands of
messages on one screen. It would be better to show the user a dozen messages at a
time, and let the user decide when to look at more, such as by clicking a Next link, or
scrolling to the bottom of the display.

A query cursor is like a bookmark in a list of query results. After fetching some
results, you can ask the query API for the cursor that represents the spot immediately

182 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

after the last result you fetched. When you perform the query again at a later time,
you can include the cursor value, and the next result fetched will be the one at the
spot where the cursor was generated.

Cursors are fast. Unlike with the “offset” fetch parameter, the datastore does not have
to scan from the beginning of the results to find the cursor location. The time to fetch
results starting from a cursor is proportional to the number of results fetched. This
makes cursors ideal for paginated displays of items.

The following is code for a simple paginated display:

import jinja2
import os
import webapp2

from google.appengine.datastore import datastore_query
from google.appengine.ext import ndb

template_env = jinja2.Environment(
 loader=jinja2.FileSystemLoader(os.getcwd()))

PAGE_SIZE = 10

class Message(ndb.Model):
 create_date = ndb.DateTimeProperty(auto_now_add=True)
 # ...

class ResultsPageHandler(webapp2.RequestHandler):
 def get(self):
 cursor_str = self.request.get('c', None)
 cursor = None
 if cursor_str:
 cursor = datastore_query.Cursor(urlsafe=cursor_str)

 query = Message.query().order(-Player.create_date)
 results, new_cursor, more = query.fetch_page(
 PAGE_SIZE, start_cursor=cursor)

 template = template_env.get_template('results.html')
 context = {
 'results': results,
 }
 if more:
 context['next_cursor'] = new_cursor.urlsafe()
 self.response.out.write(template.render(context))

app = webapp2.WSGIApplication([
 ('/results', ResultsPageHandler),
 # ...
],
 debug=True)

Query Cursors | 183

www.it-ebooks.info

http://www.it-ebooks.info/

The results.html template is as follows (note the Next link in particular):

<html><body>

{% if results %}

 <p>Messages:</p>

 {% for result in results %}
 {{ result.key.id() }}: {{ result.create_date }}
 {% endfor %}

 {% if next_cursor %}
 <p>Next</p>
 {% endif %}

{% else %}
 <p>There are no messages.</p>
{% endif %}

</body></html>

This example displays all of the Message entities in the datastore, in reverse chrono‐
logical order, in pages of 10 messages per page. If there are more results after the last
result displayed, the app shows a Next link back to the request handler with the c
parameter set to the cursor pointing to the spot after the last-fetched result. When the
user clicks the link, the query is run again, but this time with the cursor value. This
causes the next set of results fetched to start where the previous page left off.

The fetch_page() method works just like the fetch() method, but it doesn’t just
return the list of results. Instead, it returns a tuple of three elements: the results, a
cursor value that represents the end of the fetched results for the query, and a bool
that is True if there are more results beyond the cursor. To fetch the next page of
results, you call the fetch_page() method on an identical query, passing it the previ‐
ous cursor value as the start_cursor argument.

The cursor value can be manipulated as a base64-encoded string that is safe to use as
a URL query parameter. The cursor returned by fetch_page() is an instance of the
Cursor class, from the google.appengine.datastore.datastore_query package. In
this example, this value is converted to a URL-safe string via the urlsafe() method,
then given to the web page template for use in a link. When the user clicks the link,
the request handler sees the encoded value as a query parameter, then makes a new
Cursor, passing the URL-safe value as the urlsafe argument to the constructor. The
reconstructed Cursor is given to fetch_page().

184 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

Note that, like the string form of datastore keys, the base64-encoded value of a cursor
can be decoded to reveal the names of kinds and properties, so you may wish to fur‐
ther encrypt or hide the value if these are sensitive.

The fetch_page() method returns the new cursor with the results. You can also use
the start_cursor argument with fetch(), iter(), get(), count(), though these
methods do not return new cursors. You can also provide an end_cursor argument to
any of these methods, after which point the methods will stop returning results. This
highlights the “bookmark” nature of cursors: they represent locations in the result set.

This example shows how to use cursors to set up a Next link in a
paginated display. Setting up a Previous link is left as an exercise
for the reader. Hint: the cursor used to display the current page, if
any, is the one the next page needs for the link.

A cursor is only valid for the query used to generate the cursor value. All query
parameters, including kinds, filters, sort orders, and whether or not the query is keys-
only, must be identical to the query used to generate the cursor.

A cursor remains valid over time, even if results are added or removed above or
below the cursor in the index. A structural change to the indexes used to satisfy the
query invalidates cursors for that query. This includes adding or removing fields of a
custom index, or switching between built-in indexes and custom indexes for a query.
These only occur as a result of you updating your index configuration. Rare internal
changes to datastore indexes may also invalidate cursors. Using a cursor that is inva‐
lid for a given query (for whatever reason) will raise an exception.

Because a cursor stays valid even after the data changes, you can use cursors to watch
for changes in some circumstances. For example, consider a query for entities with
creation timestamps, ordered by timestamp. A process traverses the results to the
end, and then stores the cursor for the end of the list (with no results after it). When
new entities are created with later timestamps, those entities are added to the index
after the cursor. Running the query with the cursor pick ups the new results.

Query Cursors | 185

www.it-ebooks.info

http://www.it-ebooks.info/

Conceptually, a cursor is a position in a list of results. Actually, a
cursor is a position in the index (or path through multiple indexes)
that represents the results for the query. This has a couple of impli‐
cations.
You can’t use a cursor on a query that uses not-equal (!=) or set
membership (IN) queries. These queries are performed by multiple
primitive queries behind the scenes, and therefore do not have all
results in a single index (or index path).
A query with a cursor may result in a duplicate result if the query
operates on a property with multiple values. Recall that an entity
with multiple values for a property appears once for each value in
the corresponding indexes. When a query gathers results, it ignores
repeated results (which are consecutive in the index). Because a
cursor represents a point in an index, it is possible for the same
entity to appear both before and after the cursor. In this case, the
query up to the cursor and the query after the cursor will both con‐
tain the entity in their results. It’s a rare edge case—the entity
would have to change after the cursor is created—but it’s one to be
aware of if you’re using multivalued properties with queries and
cursors.

Projection Queries
We’ve described the datastore as an object store. You create an entity with all of its
properties. When you fetch an entity by key, the entire entity and all its properties
come back. When you want to update a property of an entity, you must fetch the
complete entity, make the change to the object locally, then save the entire object back
to the datastore.

The types of queries we’ve seen so far reflect this reality as well. You can either fetch
entire entities that match query criteria:

SELECT * FROM Kind WHERE ...

Or you can fetch just the keys:

SELECT __key__ FROM Kind WHERE ...

And really, an entity query is just a key query that fetches the entities for those keys.
The query criteria drive a scan of an index (or indexes) containing property values
and keys, and the keys are returned by the scan.

186 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

But sometimes you only need to know one or two properties of an entity, and it’s
wasteful to retrieve an entire entity just to get at those properties. For times like these,
Cloud Datastore has another trick up its sleeve: projection queries. Projection queries
let you request specific properties of entities, instead of full entities, under certain
conditions:

SELECT prop1, prop2 FROM Kind WHERE ...

The entity objects that come back have only the requested properties (known as the
“projected properties”) and their keys set. Only the requested data is returned by the
datastore service to the app.

The idea of projection queries is based on how indexes are used to resolve queries.
While a normal query uses indexes of keys and property values to look up keys then
fetch the corresponding entities, projection queries take the requested values directly
from the indexes themselves.

Naturally, this trick requires that all of the projected properties be present in the
index used to fulfill the query. For a projection query requesting only one property,
the datastore can use the built-in index. For more than one, you must have a custom
index with all of the projected properties in it. As with other complex queries, the
development server adds index configuration for each combination of projected
properties, kind, and other query criteria.

Projection queries tend to be faster than full queries, for several reasons. Result enti‐
ties are not fetched in a separate step, as with normal queries. Instead, the result data
comes directly from the index. Less data also means less communication with the
datastore service. The entire procedure is to find the first row of the custom index
and scan to the last row, returning the columns for the projected properties.

Several restrictions fall out of this trick, and they’re fairly intuitive. Only indexed
properties can be in a projection. Another way of saying this is, only entities with all
the projected properties set to an indexable value can be a result for a projection
query. A projection query needs a custom index even if the equivalent full-entity
query does not.

There’s another weird behavior we need to note here, and yes, once again it involves
multivalued properties. As we saw earlier, if an entity contains multiple values for a
property, an index containing that property contains a row for each value (and a row
for each combination of values if you’re indexing more than one multivalued prop‐
erty), repeating each of the single-valued properties in the index. Unlike an entity or
key query, a projection query makes no attempt to de-duplicate the result list in this
case. Instead, a projection on a multivalued property returns a separate result for each
row in the index. Each result contains just the values of the properties on that row.
Such a query returns one result for each combination of matching property values.

Projection Queries | 187

www.it-ebooks.info

http://www.it-ebooks.info/

Each projection of more than one property requires its own cus‐
tom index. If you have two queries with the same kind and filter
structures but different projected properties, the queries require
two custom indexes:

SELECT prop1, prop2 FROM Kind ...
SELECT prop1, prop3 FROM Kind ...

In this case, you can save space and time-to-update by using the
same projection in both cases, and ignoring the unused properties:

SELECT prop1, prop2, prop3 FROM Kind ...

In ndb, you request a projection query by listing the properties for the projection
when you fetch the results, as the projection argument:

 q = MyModel.query()
 results = q.fetch(10, projection=('prop1', 'prop2'))

You can also use the GQL syntax for projection queries with the ndb.gql() function:

 q = ndb.gql('SELECT prop1, prop2 FROM MyModel')
 results = q.fetch(10)

The results of a projection query are instances of the model class with only the pro‐
jected properties set. The model class is aware that the result is from a projection
query, and alters its behavior slightly to accommodate. Specifically, it will allow a
property modeled as required=True to be unset if it isn’t one of the projected proper‐
ties. (We’ll cover property modeling in Chapter 9.) Also, it won’t allow the partial
instance to be put() back to the datastore, even if you set all of its properties to make
it complete.

As a sanity check, the query API will not let you project a property and use it in an
equality filter in the same query. It also won’t allow you to project the same property
more than once.

As shown, a projection query will return one result for each row in the index it is
scanning, which includes one or more rows for each entity that has all of the projec‐
ted properties. For properties with common values, the results can be a bit repetitive:

class Player(ndb.Model):
 # ...
 charclass = ndb.StringProperty()
 level = ndb.IntegerProperty()

...
 q = Player.query(projection=('charclass', 'level'))
 for result in q:
 classlevel = (result.charclass, result.level)
 # ...

188 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

This might get results like this:

('mage', 1)
('mage', 1)
('mage', 1)
('mage', 2)
('mage', 2)
('mage', 3)
('warrior', 1)
('warrior', 1)
('warrior', 1)

Projection queries have a special feature for when you only want to know which dis‐
tinct combinations of projected properties exist in the data, eliminating the dupli‐
cates. To request this, provide the distinct=True argument:

 q = Player.query(projection=('charclass', 'level'),
 distinct=True)

In this example, this would reduce the result set to one entry for each distinct combi‐
nation of the charclass and level values:

('mage', 1)
('mage', 2)
('mage', 3)
('warrior', 1)

Distinct projection queries use only a minor modification to the index scanning algo‐
rithm. The rows are scanned in order as before, but a result is only emitted if it differs
from the previous row. Only the projected properties are considered: two results are
considered equivalent if all of the projected properties are equal between them, even
if the nonprojected properties on the corresponding entities are not.

You can do a distinct projection query from GQL using the DISTINCT keyword, like
so:

 q = ndb.gql('SELECT DISTINCT charclass, level FROM Player')

Configuring Indexes
An application specifies the custom indexes it needs in a configuration file. Each
index definition includes the kind, and the names and sort orders of the properties to
include. A configuration file can contain zero or more index definitions.

Most of the time, you can leave the maintenance of this file to the development web
server. The development server watches the queries the application makes, and if a
query needs a custom index and that index is not defined in the configuration file, the
server adds appropriate configuration automatically.

Configuring Indexes | 189

www.it-ebooks.info

http://www.it-ebooks.info/

The development server will not remove index configuration. If you are sure your
app no longer needs an index, you can edit the file manually and remove it. Note that
removing index configuration does not automatically delete the index from App
Engine. After you upload the new configuration and when you are sure no versions
of the app are using the index, you must issue the appcfg vacuum_indexes com‐
mand. (We’ll cover this in more depth in Chapter 10.)

You can disable the automatic index configuration feature. Doing so causes the devel‐
opment server to behave like App Engine: if a query doesn’t have an index and needs
one, the query fails. How to do this is particular to the runtime environment, so we’ll
get to that in a moment.

Index configuration is global to all versions of your application. All versions of an app
share the same datastore, including indexes. If you deploy a version of the app and
the index configuration has changed, Cloud Datastore will use the new index config‐
uration for all versions.

The index configuration file is named index.yaml, and is in the YAML format (similar
to app.yaml). It appears in the application root directory.

The structure is a single YAML list named indexes, with one element per index. Each
index definition has a kind element (the kind name, a string) and a properties ele‐
ment. If the index supports queries with ancestor filters, it has an ancestor element
with a value of yes.

properties is a list, one element per column in the index, where each column has a
name and an optional direction that is either asc (ascending order, the default) or
desc (descending order). The order of the properties list is significant: the index is
sorted by the first column first, then by the second column, and so on.

Here’s an example of an index.yaml file, using indexes from earlier in this chapter:

indexes:
- kind: Player
 properties:
 - name: charclass
 - name: level
 direction: desc

- kind: Player
 properties:
 - name: level
 direction: desc
 - name: score
 direction: desc

190 | Chapter 7: Datastore Queries

www.it-ebooks.info

http://www.it-ebooks.info/

By default, the development server adds index configuration to this file as needed.
When it does, it does so beneath this line, adding it (and a descriptive comment) if it
doesn’t find it:

AUTOGENERATED

You can move index configuration above this line to take manual control over it. This
isn’t strictly necessary, as the development server will never delete index configura‐
tion, not even that which was added automatically.

To disable automatic index configuration in the development server, start the server
with the --require_indexes command-line option.

Configuring Indexes | 191

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Datastore Transactions

With web applications, many users access and update data concurrently. Often, multi‐
ple users need to read or write to the same unit of data at the same time. This requires
a data system that can give some assurances that simultaneous operations will not
corrupt any user’s view of the data. Most data systems guarantee that a single opera‐
tion on a single unit of data maintains the integrity of that unit, typically by schedul‐
ing operations that act on the unit to be performed in a sequence, one at a time.

Many applications need similar data integrity guarantees when performing a set of
multiple operations, possibly over multiple units of data. Such a set of operations is
called a transaction. A data system that supports transactions guarantees that if a
transaction succeeds, all the operations in the transaction are executed completely. If
any step of the transaction fails, then none of its effects are applied to the data. The
data remains in a consistent and predictable state before and after the transaction,
even if other processes are attempting to modify the data concurrently.

For example, say you want to post a message to the bulletin board in the town square
inviting other players to join your guild. The bulletin board maintains a count of how
many messages have been posted to the board, so readers can see how many messages
there are without reading every message object in the system. Posting a message
requires three datastore operations:

1. Read the old message count
2. Update the message count with an incremented value
3. Create the new message object

Without transactions, these operations may succeed or fail independently. The count
may be updated but the message object may not be created. Or, if you create the mes‐
sage object first, the object may be created, but the count not updated. In either case,

193

www.it-ebooks.info

http://www.it-ebooks.info/

the resulting count is inaccurate. By performing these operations in a single transac‐
tion, if any step fails, none of the effects are applied, and the application can try the
entire transaction again.

Also consider what happens when two players attempt to post to the message board
at the same time. To increment the message count, each player process must read the
old value, and then update it with a new value calculated from the old one. Without
transactions, these operations may be interleaved:

1. Process A reads the original count (say, 10).
2. Process B reads the count (also 10).
3. Process A adds 1 and updates the count with the new value (11).
4. Process B adds 1 to its value and updates the count (11).

Because Process B doesn’t know that Process A updated the value, the final count is 1
less than it ought to be (12). With transactions, Process B knows right away that
another process is updating the data and can do the right thing.

A scalable web application has several requirements that are at odds with transac‐
tions. For one, the application needs access to data to be fast, and to not be affected by
how much data is in the system or how it is distributed across multiple servers. The
longer it takes for a transaction to complete, the longer other processes have to wait
to access the data reserved by the transaction. The combined effect on how many
transactions can be completed in a period of time is called throughput. For web apps,
high throughput is important.

A web app usually needs transactions to finish completely and consistently, so it
knows that the effects of the transaction can be relied upon by other processes for
further calculations. The transaction is complete when it is committed, replicated to
multiple machines, and ready to be served to any process that asks for it. The promise
that all processes can see the changes once a transaction is complete is known as
strong consistency.

An alternative policy known as eventual consistency trades this promise for greater
flexibility in how changes are applied. With strong consistency, if a process wants to
read a value, but a change for that value has been committed to the datastore and not
yet ready, the process waits until the save is complete, then reads the value. But if the
process doesn’t need the latest value, it can read the older value without waiting. Con‐
sistency is eventual because the impatient processes are not guaranteed to see the lat‐
est value, but will see it after the value is ready.

Cloud Datastore provides transactions with strong consistency and low overhead. It
does this by limiting the scope of transactions: a single transaction can only read or
write to entities that belong to a single entity group. Every entity belongs to an entity

194 | Chapter 8: Datastore Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

group, by default a group of its own. The app assigns an entity to a group when the
entity is created, and the assignment is permanent.

By having the app arrange entities into groups, Cloud Datastore can treat each group
independently when applying concurrent transactions. Two transactions that use dif‐
ferent groups can occur simultaneously without harm. With a bit of thought, an app
can ensure that entities are arranged to minimize the likelihood that two processes
will need to access the same group, and thereby maximize throughput.

Entity groups also come into play with queries and indexes. If a query only needs
results from a single entity group, the query can return strongly consistent results, as
the group’s local index data is updated transactionally with the group’s entities. The
query requests this behavior by identifying the group as part of the query, using a part
of the key path, or ancestor. (We’re finally going to explain what key paths are: they
form entity groups by arranging keys in a hierarchy.)

Whereas ancestor queries are strongly consistent, queries across all entity groups are
eventually consistent: global kind-based indexes are not guaranteed to be up-to-date
by the time changes to entities are ready. This makes ancestor queries—and good
entity group design in general—a powerful weapon in your datastore arsenal.

An app can request more flexible behaviors, with their corresponding trade-offs.
Cross-group transactions (sometimes called “XG transactions”) can act on up to five
entity groups, in exchange for added latency and a greater risk of contention with
other processes. An app can specify a read policy when reading data, which can
request a faster eventually consistent read instead of a strongly consistent read that
may have to wait on pending updates.

In this chapter, we discuss what happens when you update an entity group, how to
create entities in entity groups, how to perform ancestor queries, and how to perform
multiple operations on an entity group, using a transaction. We also discuss batch
operations, how query indexes are built, and the consistency guarantees of Cloud
Datastore.

Entities and Entity Groups
When you create, update, or delete a single entity, the change occurs in a transaction:
either all your changes to the entity succeed, or none of them do. If you change two
properties of an entity and save it, every request handler process that fetches the
entity will see both changes. At no point during the save will a process see the new
value for one property and the old value for the other. And if the update fails, the
entity stays as it was before the save. In database terms, the act of updating an entity is
atomic.

Entities and Entity Groups | 195

www.it-ebooks.info

http://www.it-ebooks.info/

It is often useful to update multiple entities atomically, such that any process’s view of
the data is consistent across the entities. In the bulletin board example, the message
count and each of the messages may be stored as separate entities, but the combined
act of creating a new message entity and updating the count ought to be atomic. We
need a way to combine multiple actions into a single transaction, so they all succeed
or all fail.

To do this in a scalable way, Cloud Datastore must know in advance which entities
may be involved in a single transaction. These entities are stored and updated
together, so the datastore can keep them consistent and still access them quickly. You
tell Cloud Datastore which entities may be involved in the same transaction by using
entity groups.

Every entity belongs to an entity group, possibly a group containing just itself. An
entity can only belong to one group. You assign an entity to a group when the entity is
created. Group membership is permanent; an entity cannot be moved to another
group once it has been created.

The datastore uses entity groups to determine what happens when two processes
attempt to update data in the entity group at the same time. When this happens, the
first update that completes “wins,” and the other update is canceled. App Engine noti‐
fies the process whose update is canceled by raising an exception. In most cases, the
process can just try the update again and succeed. But the app must decide for itself
how to go about retrying, as important data may have changed between attempts.

This style of managing concurrent access is known as optimistic concurrency control.
It’s “optimistic” in the sense that the database tries to perform the operations without
checking whether another process is working with the same data (such as with a
“locking” mechanism), and only checks for collisions at the end, optimistic that the
operations will succeed. The update is not guaranteed to succeed, and the app must
reattempt the operations or take some other course of action if the data changes dur‐
ing the update.

Multiple processes vying for the opportunity to write to an entity group at the same
time is known as contention. Two processes are contending for the write; the first to
commit wins. A high rate of contention slows down your app, because it means many
processes are getting their writes canceled and have to retry, possibly multiple times.
In egregious cases, contention for a group may exclude a process to the point of the
failure of that process. You can avoid high rates of contention with careful design of
your entity groups.

Optimistic concurrency control is a good choice for web applications because reading
data is fast—a typical reader never waits for updates—and almost always succeeds. If
an update fails due to contention, it’s usually easy to try again, or return an error mes‐

196 | Chapter 8: Datastore Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

sage to the user. Most web applications have only a small number of users updating
the same piece of data, so contention failures are rare.

Updating an entity in a group can potentially cancel updates to any
other entity in the group by another process. You should design
your data model so that entity groups do not need to be updated by
many users simultaneously.
Be especially careful if the number of simultaneous updates to a
single group grows as your application gets more users. In this case,
you usually want to spread the load across multiple entity groups,
and increase the number of entity groups automatically as the user
base grows. Scalable division of a data resource like this is known
as sharding.
Also be aware that some data modeling tasks may not be practical
on a large scale. Incrementing a value in a single datastore entity
every time any user visits the site’s home page is not likely to work
well with a distributed strong consistency data system.

Keys, Paths, and Ancestors
To create an entity in a group with other entities, you associate it with the key of
another entity from that group. One way to do this is to make the existing entity’s key
the parent of the new entity. The key of the parent becomes part of the key of the
child. These parent–child relationships form a path of ancestors down to a root entity
that does not have a parent. Every entity whose key begins with the same root is in
the same group, including the root entity itself.

When you create an entity and do not specify a parent, the entity is created in a new
group by itself. The new entity is the root of the new group.

We alluded to paths earlier when we discussed keys, so let’s complete the picture. An
entity’s key consists of the path of ancestors in the entity’s group, starting from the
group’s root. Each entity in the path is represented by the entity’s kind followed by
either the system-assigned numeric ID or the app-assigned string ID. The full path is
a sequence of kind and ID pairs.

The following keys represent entities in the same group, because they all have the
same root ancestor:

MessageBoard, "The_Archonville_Times"

MessageBoard, "The_Archonville_Times" / Message, "first!"

MessageBoard, "The_Archonville_Times" / Message, "pk_fest_aug_21"

MessageBoard, "The_Archonville_Times" / Message, "first!" / Message, "keep_clean"

Entities and Entity Groups | 197

www.it-ebooks.info

http://www.it-ebooks.info/

With Python and ndb, there are two ways to make keys with ancestors. The first is to
provide the parent argument to the ndb.Key constructor, whose value is another
ndb.Key:

board_key = ndb.Key(MessageBoard, 'The_Archonville_Times')
board = board_key.get()

msg1_key = ndb.Key(Message, 'first!', parent=board_key)
msg1 = Message(key=msg1_key)
msg1.put()

Alternatively, the ndb.Key constructor can take positional arguments representing the
kinds and IDs along the path:

msg2_key = ndb.Key(MessageBoard, 'The_Archonville_Times',
 Message, 'pk_fest_aug_21')
msg2 = Message(key=msg2_key)
msg2.put()

The final kind in the ancestor path is the kind of the entity. In ndb, this must match
the model class name. You can use the class object directly (as we’ve done here) or the
string name of the class ('Message').

As a shortcut, the model class constructor can accept a parent key and an id instead
of a complete key:

msg3 = Message(parent=msg1.key(), id='keep_clean')
msg3.put()

GQL supports key literals with ancestors, as follows:

SELECT * FROM MessageAttachment
 WHERE message = KEY(MessageBoard, 'The_Archonville_Times',
 Message, 'first!',
 Message, 'keep_clean')

Notice that entities of different kinds can be in the same entity group. In the data‐
store, there is no relationship between kinds and entity groups. (You can enforce such
a relationship in your app’s code, if you like.)

Ancestors do not have to exist for a key to be valid. If you create an entity with a par‐
ent and then delete the parent, the key for the child is still valid and can still be
assembled from its parts (such as with strings in the ndb.Key constructor). This is
true even for a group’s root entity: the root can be deleted and other entities in the
group remain in the group.

You can even use a made-up key for an entity that doesn’t exist as the parent for a new
entity. Neither the kind nor the ID of an ancestor needs to represent an actual entity.
Group membership is defined by the first key part in the ancestor path, regardless of
whether that part corresponds to an entity. Here is Python code that creates two enti‐
ties in the same group without a root entity:

198 | Chapter 8: Datastore Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

root = ndb.Key('MessageBoard', 'The_Baskinville_Post')

msg1 = Message(parent=root)
msg1.put()

msg2 = Message(parent=root)
msg2.put()

After being saved with put(), the datastore assigns numeric IDs to these Message
entities, and their complete keys resemble the following:

MessageBoard, "The_Baskinville_Post" / Message, 1

MessageBoard, "The_Baskinville_Post" / Message, 2

Ancestor Queries
The root ancestor in a key path determines group membership. Intermediate ances‐
tors have no affect on group membership, which poses the question, what good are
ancestor paths? One possible answer to that question: ancestor queries.

A datastore query can include a filter that limits the results to just those entities with
a given ancestor. This can match any ancestor, not just the immediate parent. In other
words, a query can match a sequence of key parts starting from the root.

Continuing the town square bulletin board example, where each MessageBoard is the
root of an entity group containing things attached to the board, the following GQL
query returns the 10 most recent Message entities attached to a specific board:

SELECT * FROM Message
 WHERE ANCESTOR IS KEY(MessageBoard,
 'The_Archonville_Times')
 ORDER BY post_date DESC
 LIMIT 10

Most queries that use an ancestor filter need custom indexes. There is one unusual
exception: a query does not need a custom index if the query also contains equality
filters on properties (and no inequality filters or sort orders). In this exceptional case,
the “merge join” algorithm can use a built-in index of keys along with the built-in
property indexes. In cases where the query would need a custom index anyway, the
query can match the ancestor to the keys in the custom index.

With ndb, you can set the ancestor for a query by passing an ndb.Key value as the
ancestor parameter to the ndb.Query() constructor or the query() model class
method:

 q = Message.query(
 ancestor=ndb.Key(MessageBoard, 'The_Archonville_Times'))

Entities and Entity Groups | 199

www.it-ebooks.info

http://www.it-ebooks.info/

 q = q.order('-post_date')
 # ...

As we mentioned in Chapter 7, the datastore supports queries over entities of all
kinds. Kindless queries are limited to key filters and ancestor filters. Because ances‐
tors can have children of disparate kinds, kindless queries are useful for getting every
child of a given ancestor, regardless of kind:

SELECT * WHERE ANCESTOR IS KEY('MessageBoard', 'The_Archonville_Times')

A kindless ancestor query in Python:

 q = ndb.Query(
 ancestor=ndb.Key('MessageBoard', 'The_Archonville_Times'))

Although ancestor queries can be useful, don’t get carried away
building large ancestor trees. Remember that every entity with the
same root belongs to the same entity group, and more simultane‐
ous users that need to write to a group mean a greater likelihood of
concurrency failures.
If you want to model hierarchical relationships between entities
without the consequences of entity groups, consider using multi‐
valued properties to store paths. For example, if there’s an entity
whose path in your hierarchy can be represented as /A/B/C/D, you
can store this path as e.parents = ['/A', '/A/B', '/A/B/C'].
Then you can perform a query similar to an ancestor query on this
property: … WHERE parents = '/A/B'.

What Can Happen in a Transaction
Entity groups ensure that the operations performed within a transaction see a consis‐
tent view of the entities in a group. For this to work, a single transaction must limit its
operations to entities in a single group. The entity group determines the scope of the
transaction.

Within a transaction, you can fetch, update, or delete an entity by using the entity’s
key. You can create a new entity that either is a root entity of a new group that
becomes the subject of the transaction, or that has a member of the transaction’s
entity group as its parent. You can also create other entities in the same group.

You can perform queries over the entities of a single entity group in a transaction. A
query in a transaction must have an ancestor filter that matches the transaction’s
entity group. The results of the query, including both the indexes that provide the
results as well as the entities themselves, are guaranteed to be consistent with the rest
of the transaction.

200 | Chapter 8: Datastore Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

You do not need to declare the entity group for a transaction explicitly. You simply
perform datastore actions on entities of the same group. If you attempt to perform
actions that involve different entity groups within a transaction, the API raises an
exception. The API also raises an exception if you attempt to perform a query in a
transaction that does not have an ancestor filter.

Transactions have a maximum size. A single transaction can write up to 10 megabytes
of data.

Transactional Reads
Sometimes it is useful to fetch entities in a transaction even if the transaction does
not update any data. Reading multiple entities in a transaction ensures that the enti‐
ties are consistent with one another. As with updates, entities fetched in a transaction
must be members of the same entity group.

A transaction that only reads entities never fails due to contention. As with reading a
single entity, a read-only transaction sees the data as it appears at the beginning of the
transaction, even if other processes make changes after the transaction starts and
before it completes.

The same is true for ancestor-only queries within a transaction. If the transaction
does not create, update, or delete data from the entity group, it will not fail due to
contention.

The datastore can do this because it remembers previous versions of entities, using
timestamps associated with the entity groups. The datastore notes the current time at
the beginning of every operation and transaction, and this determines which version
of the data the operation or transaction sees. This is known as multiversion concur‐
rency control, a form of optimistic concurrency control. This mechanism is internal to
the datastore; the application cannot access previous versions of data, nor can it see
the timestamps.

This timestamp mechanism has a minor implication for reading data within transac‐
tions. When you read an entity in a transaction, the datastore returns the version of
the entity most recent to the beginning of the transaction. If you update an entity and
then refetch the same entity within the same transaction, the datastore returns the
entity as it appeared before the update. In most cases, you can just reuse the in-
memory object you modified (which has your changes) instead of refetching the
entity.

Eventually Consistent Reads
As described in the previous section, transactional reads are strongly consistent.
When the app fetches an entity by key, the datastore ensures that all changes commit‐
ted prior to the beginning of the current transaction are complete—and are therefore

What Can Happen in a Transaction | 201

www.it-ebooks.info

http://www.it-ebooks.info/

returned by the read—before continuing. Occasionally, this can involve a slight delay
as the datastore catches up with a backlog of committed changes. In a transaction, a
strongly consistent read can only read entities within the transaction’s entity group.

Similarly, when the app performs an ancestor query in a transaction, the query uses
the group’s local indexes in a strongly consistent fashion. The results of the index
scans are guaranteed to be consistent with the contents of the entities returned by the
query.

You can opt out of this protection by specifying a read policy that requests eventual
consistency. With an eventually consistent read of an entity, your app gets the current
known state of the entity being read, regardless of whether there are still committed
changes to be applied. With an eventually consistent ancestor query, the indexes used
for the query are consistent with the time the indexes are read.

In other words, an eventual consistency read policy causes gets and queries to behave
as if they are not a part of the current transaction. This may be faster in some cases, as
the operations do not have to wait for committed changes to be written before
returning a result.

Perhaps more importantly: an eventually consistent get operation can get an entity
outside of the current transaction’s entity group.

Transactions in Python
The Python API uses function objects to handle transactions. To perform multiple
operations in a transaction, you define a function that executes the operations by
using the @db.transactional() decorator. When you call your function outside of a
transaction, the function starts a new transaction, and all datastore operations that
occur within the function are expected to comply with the transaction’s requirements:

import datetime
from google.appengine.api import datastore_errors
from google.appengine.ext import ndb

class MessageBoard(ndb.Expando):
 pass

class Message(ndb.Expando):
 pass

@ndb.transactional()
def create_message_txn(board_name, message_name, message_title, message_text):
 board = ndb.Key('MessageBoard', board_name).get()
 if not board:
 board = MessageBoard(id=board_name)
 board.count = 0

202 | Chapter 8: Datastore Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

 message = Message(id=message_name, parent=board.key)
 message.title = message_title
 message.text = message_text
 message.post_date = datetime.datetime.now()

 board.count += 1

 ndb.put_multi([board, message])

...
 try:
 create_message_txn(
 board_name=board_name,
 message_name=message_title,
 message_title=message_title,
 message_text=message_text)

 except datastore_errors.TransactionFailedError, e:
 # Report an error to the user.
 # ...

All calls to the datastore to create, update, or delete entities within the transaction
function take effect when the transaction is committed. Typically, you would update
an entity by fetching or creating the model object, modifying it, then saving it, and
continue to use the local object to represent the entity. In the rare case where the
transaction function fetches an entity after saving it, the fetch will see the entity as it
was before the update, because the update has not yet been committed.

If the transaction function raises an exception, the transaction is aborted, and the
exception is reraised to the caller. If you need to abort the transaction but do not want
the exception raised to the caller (just the function exited), raise the ndb.Rollback
exception in the transaction function. This causes the function to abort the transac‐
tion, then return None.

If the transaction cannot be completed due to a concurrency failure, the function call
is retried automatically. By default, it is retried three times. If all three of these retries
fail, the function raises a datastore_errors.TransactionFailedError (from the
google.appengine.api.datastore_errors module). You can configure the number
of retries by providing the retries argument to the @ndb.transactional decorator:

@ndb.transactional(retries=10)
def create_message_txn(board_name, message_name, message_title, message_text):
 # ...

Make sure your transaction function can be called multiple times
safely without undesirable side effects. If this is not possible, you
can set retries=0, but know that the transaction will fail on the
first incident of contention.

Transactions in Python | 203

www.it-ebooks.info

http://www.it-ebooks.info/

The default behavior of @ndb.transactional functions is to start a new transaction if
one isn’t already started, and join the started transaction otherwise. This behavior is
controlled by the propagation argument to the decorator, whose value is one of the
following:

ndb.TransactionOptions.ALLOWED

This is the default.

ndb.TransactionOptions.MANDATORY

The function expects to be called during an already-started transaction, and
throws datastore_errors.BadRequestError if called outside a transaction.

ndb.TransactionOptions.INDEPENDENT

The function always starts a new transaction, pausing an already-started transac‐
tion, if any.

If a function should not be run in a transaction, you can isolate it by using the
@ndb.non_transactional decorator. By default, calling a nontransactional function
within a transaction pauses the transaction and does not start a new one, so datastore
operations in the function do not participate in the transaction. If you specify
allow_existing=False to the decorator, calling the nontransactional function during
a transaction raises datastore_errors.BadRequestError.

Finally, if you have a function that should be called within a transaction by some call‐
ers and without a transaction by others, you can use the ndb.transaction() wrapper
function. It takes the function to call as its first argument, and optional subsequent
arguments like those you would pass to the @ndb.transactional decorator. It calls
the function with no arguments, so if you want to call a function that accepts argu‐
ments, use a Python lambda expression:

def process_message_text(message_text):
 # ... datastore calls ...
 # result = ...

 return result

@ndb.transactional
def create_message_txn(board_name, message_name, message_title, message_text):
 # ...
 new_message_text = ndb.transaction(
 lambda: process_message_text(message_text))

As an added convenience, you can test whether the code is currently being executed
within a transaction by calling ndb.in_transaction().

Within a transaction, reading entities and fetching results from an ancestor query
uses a read policy of strong consistency. There’s no reason (or ability) to use another
read policy in this case: a transactional read either sees the latest committed state (as

204 | Chapter 8: Datastore Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

with strong consistency) or the transaction fails because the entity group has been
updated since the transaction was started.

How Entities Are Updated
To fully understand how the datastore guarantees that your data stays consistent, it’s
worth discussing how transactions are performed behind the scenes. To do so, we
must mention BigTable, Google’s distributed data system that is the basis of the App
Engine datastore. We won’t go into the details of how entities, entity groups, and
indexes are stored in BigTable, but we will refer to BigTable’s own notion of atomic
transactions in our explanation.

Figure 8-1 shows the phases of a successful transaction.

Figure 8-1. The timeline of a transaction: the operations, the commit phase, and the
apply phase

The datastore uses a “journal” to keep track of changes that need to be applied to enti‐
ties in an entity group. Each journal entry has a unique timestamp that indicates the
order in which the changes were made. The datastore remembers the timestamp of
the most recent change that has been committed, and guarantees that attempts to
read the data will see all changes up to that point.

When an app begins a transaction for an entity group, the datastore makes a note of
the current last-committed timestamp for the group (point A in Figure 8-1). As the
app calls the datastore to update entities, the datastore writes the requested changes to
the journal. Each change is marked as “uncommitted.”

When the app finishes the transaction (point B), the datastore checks the group’s last-
committed timestamp again. If the timestamp hasn’t changed since the transaction
began, it marks all the transaction’s changes as “committed” and then advances the
group’s timestamp. Otherwise, the timestamp was advanced by another request han‐
dler since the beginning of the transaction, so the datastore aborts the current trans‐
action and reports a concurrency failure to the app.

Verifying the timestamp, committing the journal entries, and updating the timestamp
all occur in an atomic BigTable operation. If another process attempts to commit a
transaction to the same entity group while the first transaction’s commit is in pro‐

How Entities Are Updated | 205

www.it-ebooks.info

http://www.it-ebooks.info/

gress, the other process waits for the first commit to complete. This guarantees that if
the first commit succeeds, the second process sees the updated timestamp and reports
a concurrency failure. This is illustrated in Figure 8-2.

Figure 8-2. A timeline of two concurrent transactions; the first to commit “wins”

Once the journal entries have been committed (point C in Figure 8-1), the datastore
applies each committed change to the appropriate entity and appropriate indexes,
then marks the change as “applied.” If there are multiple unapplied changes for an
entity in the journal, they are applied in the order they were performed.

Here’s the sneaky bit. If the apply phase fails for whatever reason (hard drive failure,
power outage, meteorite), the committed transaction is still considered successful. If
there are committed but unapplied changes the next time someone performs an oper‐
ation on an entity in the entity group (within or without an explicit transaction), the
datastore reruns the apply phase before performing the operation. This ensures that
operations and transactions always see all changes that have been committed prior to
the start of the operation or transaction. The datastore also uses background pro‐
cesses to roll forward unapplied operations, as well as purge old journal entries.

The roll-forward mechanism also ensures that subsequent operations can see all com‐
mitted changes even if the apply phase is still in progress. At the beginning of an
operation or transaction, the datastore notes the current time, then waits for all
changes committed prior to that time to be applied before continuing.

Notice that the apply phase does not need to occur inside a BigTable transaction.
Because of this, the datastore can spread multiple entities in the same group across
multiple machines, and can allow an entity group to get arbitrarily large. Only the
group’s last-committed timestamp and journal need to be stored close enough
together for a BigTable transaction. The datastore makes an effort to store entities of

206 | Chapter 8: Datastore Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

the same group “near” each other for performance reasons, but this does not limit the
size or speed of entity groups.

When an app updates an entity outside of a transaction, the datastore performs the
update with the same transactional mechanism, as if it were a transaction of just one
operation. The datastore assumes that an update performed outside of a transaction is
safe to perform at any time, and will retry the update automatically in the event of a
concurrency failure. If several attempts fail, the datastore throws the concurrency
exception. In contrast, an explicit transaction throws a concurrency exception on
the first failure, because the datastore does not know if it is safe to commit the
same changes. The app must retry the explicit transaction on its own. (The
@ndb.transactional decorator knows how to rerun the function that performs the
transaction, but this occurs as part of the application code.)

Cloud Datastore replicates all data to at least three places in each of at least two differ‐
ent data centers. The replication process uses a consensus algorithm based on “Paxos”
to ensure that all sites agree that the change will be committed before proceeding.
This level of replication ensures that your app’s datastore remains available for both
reads and writes during all planned outages—and most unplanned outages.

When an app calls the datastore to update data, the call does not
return until the apply phase is complete. If an error occurs at any
point in the process, the datastore call raises an exception in the
application.
This is true even if the error occurs during the apply phase, after
the commit phase is complete and the update is guaranteed to be
applied before the next transaction. Because the application can’t
tell the difference between an error during the commit phase and
an error during the apply phase, the application should react as if
the update has not taken place.
In most cases, the app can simply retry the update. More care is
needed if retrying the update relies on the previous attempt being
unsuccessful, but these cases usually require testing the state of the
data in a transaction, and the solution is simply to retry the entire
transaction. If the transaction creates a new entity, one way to avoid
creating a duplicate entity is to use a key name instead of a system-
supplied numeric ID, precalculating and testing for the nonexis‐
tence of a global unique ID (GUID) if necessary.
Failures during the apply phase are very rare, and most errors rep‐
resent a failure to commit. One of the most important principles in
scalable app design is to be tolerant of the most rare kinds of faults.

How Entities Are Updated | 207

www.it-ebooks.info

http://www.it-ebooks.info/

How Entities Are Read
The timestamp mechanism explains what happens when two processes attempt to
write to the same entity group at the same time. When one process commits, it
updates the timestamp for the group. When the other process tries to commit, it noti‐
ces the timestamp has changed, and aborts. The app can retry the transaction with
fresh data, or give up.

The transaction is aborted only if the app attempted to update an entity during the
transaction and another process has since committed changes. If the app only reads
data in the transaction and does not make changes, the app simply sees the entities as
they were at the beginning of the transaction. To support this, the datastore retains
several old versions of each entity, marked with the timestamp of the most recently
applied journal entry. Reading an entity in a transaction returns the version of the
entity most recent to the timestamp at the beginning of the transaction.

Reading an entity outside of a transaction or with an eventual consistency read policy
does not roll forward committed-but-unapplied changes. Instead, the read returns
the entity as it appears as of the most recently applied changes. This is faster than
waiting for pending changes to be applied, and usually not a concern for reads out‐
side of transactions. But this means the entity may appear older or newer than other
entities. If you need any consistency guarantees when reading multiple entities, use
transactions and the strong consistency read policy.

Batch Updates
When you read, create, update, or delete an entity, the runtime environment makes a
service call to the datastore. Each service call has some overhead, including serializing
and deserializing parameters and transmitting them between machines in the data
center. If you need to update multiple entities, you can save time by performing the
updates together as a batch in one service call. (We introduced batch calls in Chap‐
ter 6.)

Here’s a quick example of the Python batch API:

Creating multiple entities:
e1 = Message(id='m1', text='...')
e2 = Message(id='m2', text='...')
e3 = Message(id='m3', text='...')
message_keys = ndb.put_multi([e1, e2, e3])

Getting multiple entities using keys:
message_keys = [ndb.Key('Message', 'm1'),
 ndb.Key('Message', 'm2'),
 ndb.Key('Message', 'm3')]
messages = ndb.get_multi(message_keys)
for message in messages:

208 | Chapter 8: Datastore Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

 # ...

Deleting multiple entities:
ndb.delete_multi(message_keys)

When the datastore receives a batch call, it bundles the keys or entities by their entity
groups, which it can determine from the keys. Then it dispatches calls to the data‐
store machines responsible for each entity group. The datastore returns results to the
app when it has received all results from all machines.

If the call includes changes for multiple entities in a single entity group, those changes
are performed in a single transaction. There is no way to control this behavior, but
there’s no reason to do it any other way. It’s faster to commit multiple changes to a
group at once than to commit them individually, and no less likely to result in con‐
currency failures.

Outside of a transaction, a batch call can operate on multiple entity groups. In this
case, each entity group involved in a batch update may fail to commit due to a con‐
currency failure. If a concurrency failure occurs for any update, the API raises the
concurrency failure exception—even if updates to other groups were committed suc‐
cessfully.

Batch updates in disparate entity groups are performed in separate threads, possibly
by separate datastore machines, executed in parallel to one another. This can make
batch updates especially fast compared to performing each update one at a time.

Remember that if you use the batch API during a transaction, every entity or key in
the batch must use the same entity group as the rest of the transaction.

How Indexes Are Updated
As we saw in Chapter 7, datastore queries are powered by indexes. The datastore
updates these indexes as entities change, so results for queries can be determined
without examining the entity properties directly. This includes an index of keys, an
index for each kind and property, and custom indexes described by your app’s config‐
uration files that fulfill complex queries. When an entity is created, updated, or
deleted, each relevant index is updated and sorted so subsequent queries match the
new state of the data.

The datastore updates indexes after changes have been committed, during the apply
phase. Changes are applied to indexes and entities in parallel. Updates of indexes are
themselves performed in parallel, so the number of indexes to update doesn’t neces‐
sarily affect how fast the update occurs.

As with entities, the datastore retains multiple versions of index data, labeled with
timestamps. When you perform a query, the datastore notes the current time, then
uses the index data that is most current up to that time. However, unless the query

How Indexes Are Updated | 209

www.it-ebooks.info

http://www.it-ebooks.info/

has an ancestor filter, the datastore has no way to know which entity groups are
involved in the result set and so cannot wait for changes in progress to be applied.

This means that, for a brief period during an update, a query that doesn’t have an
ancestor filter (a nonancestor query, or global query) may return results that do not
match the query criteria. While another process is updating an entity, the query may
see the old version of its index but return the new version of the entity. And because
changes to entities and changes to indexes are applied in parallel, it is possible for a
query to see the new version of its index but return the old version of the entity.

Figure 8-3 illustrates one possibility of what nontransactional reads and queries may
see while changes are being applied.

Figure 8-3. What nontransactional fetches and queries may see while changes are
applied

Although fetches r1 and r2 both occur after the commit, because they do not occur
within transactions, they see different data: r1 fetches the entity as it is before the
update, and r2 fetches the entity as it is after the update has been applied. Queries q1
and q2 may use the same (preupdate) index data to produce a list of results, but they
return different entity data depending on whether changes have been applied to the
entities.

In rare cases, it’s also possible for changes to indexes to be applied prior to changes to
entities, and for the apply phase to fail and leave committed changes unapplied until
the next transaction on the entity group. If you need stronger guarantees, fetch or
query entities within transactions to ensure all committed changes are applied before
the data is used.

A query with an ancestor filter knows its entity group, and can therefore offer the
same strong consistency guarantees within transactions as fetches. But many useful
queries span entity groups, and therefore cannot be performed in transactions. If it is
important to your application that a result for a nontransactional query match the
criteria exactly, verify the result in the application code before using it.

210 | Chapter 8: Datastore Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

Cross-Group Transactions
Transactions and entity groups present a fundamental tension in designing data for
the App Engine datastore. If all we cared about was data consistency, we’d put all our
data in a single entity group, and every transaction would have a consistent and cur‐
rent view of the entire world—and would be battling with every other simultaneous
transaction to commit a change. Conversely, if we wanted to avoid contention as
much as possible, we’d keep every entity in its own group and never perform more
than one operation in a transaction.

Entity groups are a middle ground. They allow us to define limited sets of data that
demand strongly consistent transactional updates, and with some thought we can
organize these boundaries so an increase in traffic does not result in an increase in
simultaneous updates to a single group. For example, if a user only ever updates an
entity group dedicated to that user, then an increase in users will never increase the
number of users writing to a given group simultaneously.

But real-world data patterns are not always so clean. Most useful applications involve
sharing data between users. At another extreme, it’s possible all users can view and
modify the same set of data. At that point, we need to make some sacrifices to operate
at scale, using techniques like sharding and eventually consistent data structures
updated by background tasks to spread the updates over time and space.

There are many common scenarios where it’d be convenient if we could just operate
on a few entity groups in a transaction, when one group is too constraining but we
don’t need to update the world. Sometimes we need to operate on several disparate
sets of data at once, but it’d make our data model too complex to try and manage
them in groups. For these cases, App Engine has a feature: cross-group transactions.

A cross-group transaction (or an “XG transaction”) is simply a transaction that’s
allowed to operate on up to five entity groups transactionally. The datastore uses a
slightly different—and slightly slower—mechanism for this, so to use more than one
group transactionally, you must declare that your transaction is of the cross-group
variety. The cross-group mechanism is built on top of the existing single-group
mechanism in BigTable. It manages the updates so all groups commit or fail com‐
pletely.

The important idea here is that you do not need to say ahead of time which groups
will be involved in a transaction. Any given cross-group transaction can pick any
entity groups on which to operate, up to five.

As with a single group transaction, a cross-group transaction can read from, write to,
and perform ancestor queries on any of the groups in the transaction. If any group in
a given cross-group transaction is updated after the transaction is started but before it
tries to commit, the entire transaction fails and must be retried. Whether failure due

Cross-Group Transactions | 211

www.it-ebooks.info

http://www.it-ebooks.info/

to contention is more likely with more groups depends entirely on the design of your
app.

You declare a transaction as a cross-group transaction by setting the xg=True argu‐
ment in the @ndb.transactional decorator for the transaction function. If a transac‐
tional function is XG, or calls a transactional function that is XG, the entire
transaction becomes an XG transaction:

@ndb.transactional(xg=True):
def update_win_tallies(winning_player, losing_player):
 # ...

212 | Chapter 8: Datastore Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Data Modeling with ndb

Data modeling is the process of translating the data requirements of your application
to the features of your data storage technology. While the application deals in players,
towns, weapons, potions, and gold, the datastore knows only entities, entity groups,
keys, properties, and indexes. The data model describes how the data is stored and
how it is manipulated. Entities represent players and game objects, while properties
describe the status of objects and the relationships between them. When an object
changes location, the data is updated in a transaction, so the object cannot be in two
places at once. When a player wants to know about the weapons in her inventory, the
application performs a query for all weapon objects whose location is the player.

In the last few chapters, we’ve been using the Python class ndb.Expando to create and
manipulate entities and their properties. As we’ve been doing it, this class illustrates
the flexible nature of the datastore. The datastore itself does not impose or enforce a
structure on entities or their properties, giving the application control over how indi‐
vidual entities represent data objects. This flexibility is also an essential feature for
scalability: changing the structure of millions of records is a large task, and the proper
strategy for doing this is specific to the task and the application.

But structure is needed. Every player has a number of health points, and a Player
entity without a health property, or with a health property whose value is not an
integer, is likely to confuse the battle system. The data ought to conform to a struc‐
ture, or schema, to meet the expectations of the code. Because the datastore does not
enforce this schema itself—the datastore is schemaless—it is up to the application to
ensure that entities are created and updated properly.

213

www.it-ebooks.info

http://www.it-ebooks.info/

1 The ndb library is a successor to an older library called ext.db, which is still distributed with the App Engine
SDK. While it carries on many of the ideas of ext.db, the ndb library is not backwards compatible. You can
read a version of this chapter that covers ext.db for free on the website for this book.

App Engine includes a data modeling library for defining and enforcing data schemas
in Python called ndb.1 This library resides in the google.appengine.ext.ndb pack‐
age. It includes several related classes for representing data objects, including
ndb.Model, ndb.Expando, and ndb.PolyModel. To give structure to entities of a given
kind, you create a subclass of one of these classes. The definition of the class specifies
the properties for those objects, their allowed value types, and other requirements.

In this chapter, we’ll introduce the ndb data modeling library and discuss how to use
it to enforce a schema for the otherwise schemaless datastore. We’ll also discuss how
the library works and how to extend it. Finally, we’ll look at the ndb library’s powerful
performance-related features for managing data caches.

Models and Properties
The ndb.Model superclass lets you specify a structure for every entity of a kind. This
structure can include the names of the properties, the types of the values allowed for
those properties, whether the property is required or optional, and a default value.
Here is a definition of a Book class similar to the one we created in Chapter 6:

from google.appengine.ext import ndb
import datetime

class Book(ndb.Model):
 title = ndb.StringProperty(required=True)
 author = ndb.StringProperty(required=True)
 copyright_year = ndb.IntegerProperty()
 author_birthdate = ndb.DateProperty()

obj = Book(title='The Grapes of Wrath',
 author='John Steinbeck')
obj.copyright_year = 1939
obj.author_birthdate = datetime.date(1902, 2, 27)

obj.put()

This Book class inherits from ndb.Model. In the class definition, we declare that all
Book entities have four properties, and we declare their value types: title and author
are strings, copyright_year is an integer, and author_birthdate is a date-time.
If someone tries to assign a value of the wrong type to one of these properties,
the assignment raises a datastore_errors.BadValueError (from the
google.appengine.api.datastore_errors module).

214 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.dansanderson.com/appengine
http://www.it-ebooks.info/

2 It is possible to create an entity with a property whose name starts with an underscore. This convention only
applies to object attributes in the modeling API.

We also declare that title and author are required properties. If someone tries to
create a Book without these properties set as arguments to the Book constructor, the
attempt will raise a datastore_errors.BadValueError. Both copyright_year and
author_birthdate are optional, so we can leave them unset on construction, and
assign values to the properties later. If these properties are not set by the time the
object is saved, the resulting entity will have a value of None for these properties—and
that’s allowed by this model.

A property declaration ensures that the entity created from the object has a value for
the property, possibly None. As we’ll see in the next section, you can further specify
what values are considered valid using arguments to the property declaration.

A model class that inherits from ndb.Model ignores all attributes that are not declared
as properties when it comes time to save the object to the datastore. In the resulting
entity, all declared properties are set, and no others.

This is the sole difference between ndb.Model and ndb.Expando. An ndb.Model class
ignores undeclared properties. An ndb.Expando class saves all attributes of the object
as properties of the corresponding entity. That is, a model using an ndb.Expando class
“expands” to accommodate assignments to undeclared properties.

You can use property declarations with ndb.Expando just as with ndb.Model. The
result is a data object that validates the values of the declared properties, and accepts
any values for additional undeclared properties.

Properties with declarations are sometimes called static properties, while properties
on an ndb.Expando without declarations are dynamic properties. These terms have a
nice correspondence with the notions of static and dynamic typing in programming
languages. Property declarations implement a sort of runtime validated static typing
for model classes, on top of Python’s own dynamic typing.

As we’ll see, property declarations are even more powerful than static typing, because
they can validate more than just the type of the value.

For both ndb.Model and ndb.Expando, object attributes whose names begin with an
underscore (_) are always ignored. You can use these private attributes to attach tran‐
sient data or functions to model objects.2

Beyond the model definition, ndb.Model and ndb.Expando have the same interface
for saving, fetching, and deleting entities, and for performing queries and transac‐
tions. ndb.Expando is a subclass of ndb.Model.

Models and Properties | 215

www.it-ebooks.info

http://www.it-ebooks.info/

Property Declarations
You declare a property for a model by assigning a property declaration object to an
attribute of the model class. The name of the attribute is the name of the datastore
property. The value is an object that describes the terms of the declaration. The
ndb.StringProperty object assigned to the title class attribute says that an instance
of the class, and therefore the entity it represents, can only have a string value for its
title property. The required=True argument to the ndb.StringProperty construc‐
tor says that the object is not valid unless it has a value for the title property.

This can look a little confusing if you’re expecting the class attribute to shine through
as an attribute of an instance of the class, as it normally does in Python. Instead, the
ndb.Model class hooks into the attribute assignment mechanism so it can use the
property declaration to validate a value assigned to an attribute of the object. In
Python terms, the model uses property descriptors to enhance the behavior of
attribute assignment.

Property declarations act as intermediaries between the application and the datastore.
They can ensure that only values that meet certain criteria are assigned to properties.
They can assign default values when constructing an object. They can even convert
values between a data type used by the application and one of the datastore’s native
value types, or otherwise customize how values are stored.

Property Value Types
ndb.StringProperty is an example of a property declaration class. There are several
property declaration classes included with the Python SDK, one for each native data‐
store type. Each one ensures that the property can only be assigned a value of the cor‐
responding type:

class Book(ndb.Model):
 title = ndb.StringProperty()

b = Book()

b.title = 99 # datastore_errors.BadValueError, title must be a string

b.title = 'The Grapes of Wrath' # OK

Table 9-1 lists the datastore native value types and their corresponding property dec‐
laration classes.

216 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

Table 9-1. Datastore property value types and the corresponding property declaration classes

Data type Python type Property class

Unicode text string (up to 500 characters,
indexed)

unicode or str (converted to unicode as
ASCII)

ndb.StringProperty

Long Unicode text string (not indexed) unicode or str (converted to unicode as
ASCII)

ndb.TextProperty

Byte string (up to 500 bytes if indexed) str ndb.BlobProperty

Boolean bool ndb.BooleanProperty

Integer (64-bit) long or int (converted to 64-bit long) ndb.IntegerProperty

Float (double precision) float ndb.FloatProperty

Date-time datetime.datetime ndb.DateTimeProperty

datetime.date ndb.DateProperty

datetime.time ndb.TimeProperty

Entity key ndb.Key ndb.KeyProperty

A Google account users.User ndb.UserProperty

The ndb library includes several additional property declaration classes that perform
special functions. We’ll look at these later in this chapter.

There is one special property declaration class worth mentioning now:
ndb.GenericProperty. This declaration accepts any type of value that can be stored
directly to the datastore. (Refer back to Table 6-1.) This is useful for declaring proper‐
ties whose values can be any of multiple types. (This class also comes in handy when
forming query expressions based on undeclared properties and ndb.Expando, as we
saw in Chapter 7.)

Property Validation
You can customize the behavior of a property declaration by passing arguments to the
declaration’s constructor. We’ve already seen one example: the required argument.

Property Declarations | 217

www.it-ebooks.info

http://www.it-ebooks.info/

All property declaration classes support the required argument. If True, the property
is required and must not be None. You must provide a value for each required prop‐
erty when creating a new object. If you attempt to store an entity without setting a
required property, it raises datastore_errors.BadValueError:

class Book(ndb.Model):
 title = ndb.StringProperty(required=True)

b = Book()
b.put() # datastore_errors.BadValueError, title is required

b = Book(title='The Grapes of Wrath')
b.put() # OK

b = Book()
b.title = 'The Grapes of Wrath'
b.put() # OK

The datastore makes a distinction between a property that is not set and a property
that is set to the null value (None). Property declarations do not make this distinction,
because all declared properties must be set (possibly to None). Unless you say other‐
wise, the default value for declared properties is None, so the required validator treats
the None value as an unspecified property value.

You can change the default value with the default argument. When you create an
object without a value for a property that has a default value, the constructor assigns
the default value to the property.

A property that is required and has a default value uses the default if constructed
without an explicit value. The value can never be None. For example:

class Book(ndb.Model):
 rating = ndb.IntegerProperty(default=1)

b = Book() # b.rating == 1

b = Book(rating=5) # b.rating == 5

You can declare that a property should contain only one of a fixed set of values by
providing a list of possible values as the choices argument. If None is not one of the
choices, this acts as a more restrictive form of required: the property must be set to
one of the valid choices using a keyword argument to the constructor. For example:

_KEYS = ['C', 'C min', 'C 7',
 'C#', 'C# min', 'C# 7',
 # ...
]

class Song(ndb.Model):
 song_key = ndb.StringProperty(choices=_KEYS)

218 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

s = Song()

s.song_key = 'H min' # datastore_errors.BadValueError

s.song_key = 'C# min' # OK

All of these features validate the value assigned to a property, and raise a data
store_errors.BadValueError if the value does not meet the appropriate conditions.
For even greater control over value validation, you can define your own validation
function and assign it to a property declaration as the validator argument. The func‐
tion must take the property declaration object and the value as arguments, and either
raise an exception if the value should not be allowed, or return the value to use:

def is_recent_year(prop, val):
 if val < 1923:
 raise datastore_errors.BadValueError
 return val

class Book(ndb.Model):
 copyright_year = ndb.IntegerProperty(validator=is_recent_year)

b = Book(copyright_year=1922) # datastore_errors.BadValueError

b = Book(copyright_year=1924) # OK

A validator function can return a different value than what was assigned to the prop‐
erty to act as a filter. However, the value must survive repeated calls to the validator.
This is because values get revalidated each time the object is marshaled to the data‐
store. For example, a validator that returns val.lower() is fine, because passing the
result through the validator again does not produce a new value. A validator that
returns '"' + val + '"' would add quote marks around the string every time the
object is saved, which isn’t the desired effect.

Nonindexed Properties
In Chapter 7, we mentioned that you can set properties of an entity in such a way that
they are available on the entity, but are considered unset for the purposes of indexes.
In ndb, you establish a property as nonindexed using a property declaration. If the
property declaration is given an indexed argument of False, entities created with that
model class will set that property as nonindexed:

class Book(ndb.Model):
 first_sentence = ndb.StringProperty(indexed=False)

b = Book()
b.first_sentence = "On the Internet, popularity is swift and fleeting."
b.put()

Property Declarations | 219

www.it-ebooks.info

http://www.it-ebooks.info/

Count the number of Book entities with
an indexed first_sentence property...
c = Book.all().order('first_sentence').count(1000)

c = 0

Some property declarations are nonindexed by default, namely TextProperty and
BlobProperty. In the case of BlobProperty, you can set indexed=True, as long as the
value is no more than 500 bytes in length. (For a short indexed TextProperty, just
use StringProperty.)

When using undeclared properties with an ndb.Expando model, all properties are
considered indexed by default, unless the assigned value is a unicode longer than 500
characters or a str longer than 500 bytes (which cannot be indexed). As with
ndb.Model, you can use property declarations in the class definition to override this
default for specific properties. To change this default for all properties assigned to an
ndb.Expando instance, set the _default_indexed = False class property:

class NonindexedEntity(ndb.Expando):
 _default_indexed = False

entity = NonindexedEntity()
entity.foo = 'bar' # The foo property is stored as a nonindexed value.
entity.put()

Automatic Values
Several property declaration classes include features for setting values automatically.

The ndb.DateProperty, ndb.DateTimeProperty, and ndb.TimeProperty classes can
populate the value automatically with the current date and time. To enable this behav‐
ior, you provide the auto_now or auto_now_add arguments to the property declara‐
tion.

If you set auto_now=True, the declaration class overwrites the property value with the
current date and time when you save the object. This is useful when you want to keep
track of the last time an object was saved:

class Book(ndb.Model):
 last_updated = ndb.DateTimeProperty(auto_now=True)

b = Book()
b.put() # last_updated is set to the current time

...

b.put() # last_updated is set to the current time again

If you set auto_now_add=True, the property is set to the current time only when the
object is saved for the first time. Subsequent saves do not overwrite the value:

220 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

class Book(ndb.Model):
 create_time = ndb.DateTimeProperty(auto_now_add=True)

b = Book()
b.put() # create_time is set to the current time

...

b.put() # create_time stays the same

The ndb.UserProperty declaration class also includes an automatic value feature. If
you provide the argument auto_current_user=True, the value is set to the user
accessing the current request handler if the user is signed in. If you provide
auto_current_user_add=True, the value is only set to the current user when the
entity is saved for the first time, and left untouched thereafter. If the current user is
not signed in, the value is set to None:

class BookReview(ndb.Model):
 created_by_user = ndb.UserProperty(auto_current_user_add=True)
 last_edited_by_user = ndb.UserProperty(auto_current_user=True)

br = BookReview()
br.put() # created_by_user and last_edited_by_user set

...

br.put() # last_edited_by_user set again

At first glance, it might seem reasonable to set a default for an ndb.UserProperty this
way:

from google.appengine.api import users

class BookReview(ndb.Model):
 created_by_user = ndb.UserProperty(
 default=users.get_current_user())
 # WRONG

This would set the default value to be the user who is signed in when the class is
imported. Subsequent requests handled by the instance of the application will use a
previous user instead of the current user as the default.

To guard against this mistake, ndb.UserProperty does not accept the default argu‐
ment. You can use only auto_current_user or auto_current_user_add to set an
automatic value.

Repeated Properties
The ndb library includes support for multivalued properties, which it just calls
“repeated” properties. You declare a multivalued property by specifying a property

Property Declarations | 221

www.it-ebooks.info

http://www.it-ebooks.info/

declaration with the repeated=True argument. Its value is a Python list, possibly
empty, containing values of the corresponding type:

class Book(ndb.Model):
 tags = ndb.StringProperty(repeated=True)

b = Book()
b.tags = ['python', 'app engine', 'data']

The datastore does not distinguish between a multivalued property with no elements
and no property at all. As such, an undeclared property on an ndb.Expando object
can’t store the empty list. If it did, when the entity is loaded back into an object, the
property simply wouldn’t be there, potentially confusing code that’s expecting to find
an empty list. To avoid confusion, ndb.Expando disallows assigning an empty list to
an undeclared property.

When you declare a repeated property, the declaration takes care of translating
between the absence of a property and the empty list representation in your code. A
repeated property declaration makes it possible to keep an empty list value on a mul‐
tivalued property. The declaration interprets the state of an entity that doesn’t have
the declared property as the property being set to the empty list, and maintains that
distinction on the object. This also means that you cannot assign None to a declared
list property—but this isn’t of the expected type for the property anyway. (None can be
one of the values in the list if it is allowed by the type of the declaration.)

The datastore does distinguish between a property with a single value and a multival‐
ued property with a single value. An undeclared property on an ndb.Expando object
can store a list with one element, and represent it as a list value the next time the
entity is loaded.

A repeated property declaration cannot have a default value or required=True. If
the declaration specifies a validator function, this function will be called once for
each value in the list. This means the validator cannot act on the length of the list,
only the individual values in the list.

To declare a repeated property whose values can be of disparate
types, use ndb.GenericProperty(repeated=True).

Serialized Properties
The simple property types we’ve seen so far let you store basic values and index them
for the purpose of queries. When you have a more sophisticated data value, such as a
dictionary, and you don’t need to index it, one way to store it on a property is to seri‐

222 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

alize it, then store the serialized blob as an ndb.BlobProperty. This has the disadvan‐
tage that your application code must manually serialize and deserialize the value
when it is used and updated.

ndb has two property declaration classes that help with this common case: ndb.Json
Property and ndb.PickleProperty. The ndb.JsonProperty class takes a Python data
object that can be represented as a JSON data record, and converts it to and from the
JSON format automatically. Similarly, ndb.PickleProperty does the same thing, but
uses Python’s pickle library to perform the serialization and deserialization. In both
cases, the value is stored in the datastore as an unindexed blob value. To your applica‐
tion code, the value appears in its original form:

class Player(ndb.Model):
 # ...
 theme = ndb.JsonProperty()

p = Player()
p.theme = {
 'background-color': '#000033',
 'color': 'white',
 'spirit_animal': 'phoenix'
}
p.put()

if p.theme['spirit_animal'] == 'cougar':
 # ...
 pass

p.theme['color'] = 'yellow'
p.put()

Both property declaration classes accept an optional compressed argument. If True,
the value will be compressed as well as serialized when stored, and decompressed and
deserialized when loaded. (ndb.BlobProperty also accepts the compressed argu‐
ment.)

Remember that ndb.JsonProperty takes a data object, not a JSON string, as its value.
If you need the JSON string form of the value, or you need to parse a JSON string
into a data object, use the json module in the Python standard library.

Use ndb.JsonProperty when the object can be represented as
JSON and you might need to access the serialized value from non-
Python code. ndb.PickleProperty can accept a wider range of val‐
ues, but uses a serialization format that is exclusive to Python.

Property Declarations | 223

www.it-ebooks.info

http://www.it-ebooks.info/

Structured Properties
Using serialized property classes for storing data structures is easy enough, but the
values cannot participate in queries (at least not meaningfully). When you need to
store structured data across multiple properties that can participate in queries, ndb
has yet another powerful feature: structured properties.

A structured property has a value that is an instance of an ndb.Model class. This value
can have attributes, and these attributes are modeled using the same property decla‐
rations that you use to model an entity. When ndb stores the value, it converts the
value into multiple properties, one for each inner property of the value. For example:

class NotificationPrefs(ndb.Model):
 news = ndb.BooleanProperty(default=False)
 messages = ndb.BooleanProperty(default=False)
 raids = ndb.BooleanProperty(default=False)
 last_updated = ndb.DateTimeProperty(auto_now=True, indexed=False)

class Player(ndb.Model):
 notifications = ndb.StructuredProperty(NotificationPrefs)

p = Player()
p.notifications = NotificationPrefs()
p.notifications.news = True
p.put()

In the preceding example, the Player model uses a structured property based on the
NotificationPrefs class. To set this property, we construct a NotificationPrefs
instance, and can access and set values on the instance as with any other instance
variable (such as p.notification.news).

When the Player object is stored, ndb creates one entity of kind Player with four
properties: notifications.news, notifications.messages, notifications.raids
(all Boolean values), and notifications.last_updated (a datetime value). Because
the Boolean values are described as indexable by the NotificationPrefs model, they
are indexed by the datastore. notifications.last_updated has indexed=False and
so is not indexed.

The indexed properties of the inner model can participate in queries, like so:

q = Player.query().filter(Player.notifications.news == True)

for player in q:
 # Send news notification...

Structured properties can be repeated (repeated=True). ndb simply repeats the inner
properties as needed when storing the entity to the datastore. It stores enough infor‐
mation so that it can reassemble the inner structured values correctly when reading

224 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

the entity. This poses a modest restriction: when a structured property’s model has its
own structured property, only one of the properties can be repeated.

If you like using model classes for declaring typed structures but do not need to index
the inner properties, ndb also provides an ndb.LocalStructuredProperty property
declaration class. Instead of storing inner properties as separate indexable properties
of the entity, it serializes the structure and stores it as a blob value, much like
ndb.JsonProperty or ndb.PickleProperty.

Computed Properties
It is often useful to have more than one view of an entity’s property data, such as a
normalized version of a value, or a summary of data on the entity. Within your appli‐
cation code, you might implement this calculation as a method or a property accessor
on the model class:

class Player(ndb.Model):
 level = ndb.IntegerProperty()
 score = ndb.IntegerProperty()

 @property
 def score_per_level(self):
 if self.level == 0:
 return 0
 return float(self.score) / float(self.level)

p = Player(level=4, score=280)

p.score_per_level == 70.0

Implemented this way, this calculated value is only available to your application code.
It is not stored in the datastore, and therefore cannot be used in datastore queries.

With ndb, you can declare a computed property that calls a method to calculate the
value of the property whenever the entity is stored. The ndb.ComputedProperty
property declaration class takes a function as its argument. This function is passed
the model instance as its only argument, and returns a value of one of the base data‐
store value types:

class Player(ndb.Model):
 level = ndb.IntegerProperty()
 score = ndb.IntegerProperty()
 score_per_level = ndb.ComputedProperty(lambda self: self._score_per_level())

 def _score_per_level(self):
 if self.level == 0:
 return 0
 return float(self.score) / float(self.level)

p = Player(level=4, score=280)

Property Declarations | 225

www.it-ebooks.info

http://www.it-ebooks.info/

Store the Player entity with level=4, score=280, score_per_level=70.
p.put()

The computed property value is calculated fresh every time it is accessed, as well as
when the entity is stored.

Models and Schema Migration
Property declarations prevent the application from creating an invalid data object, or
assigning an invalid value to a property. If the application always uses the same model
classes to create and manipulate entities, then all entities in the datastore will be con‐
sistent with the rules you establish using property declarations.

In real life, it is possible for an entity that does not fit a model to exist in the datastore.
When you change a model class—and you will change model classes in the lifetime of
your application—you are making a change to your application code, not the data‐
store. Entities created from a previous version of a model stay the way they are.

If an existing entity does not comply with the validity requirements of a model class,
you’ll get a datastore_errors.BadValueError when you try to fetch the entity from
the datastore. Fetching an entity gets the entity’s data, then calls the model class con‐
structor with its values. This executes each property’s validation routines on the data.

Some model changes are “backward compatible” such that old entities can be loaded
into the new model class and be considered valid. Whether it is sufficient to make a
backward-compatible change without updating existing entities depends on your
application. Changing the type of a property declaration or adding a required prop‐
erty are almost always incompatible changes. Adding an optional property will not
cause a datastore_errors.BadValueError when an old entity is loaded, but if you
have indexes on the new property, old entities will not appear in those indexes (and
therefore won’t be results for those queries) until the entities are loaded and then
saved with the new property’s default value.

The most straightforward way to migrate old entities to new schemas is to write a
script that queries all of the entities and applies the changes. We’ll discuss how to
implement this kind of batch operation in a scalable way using task queues, in “Task
Chaining” on page 350.

Modeling Relationships
You can model relationships between entities by storing entity keys as property val‐
ues. In ndb, you use ndb.KeyProperty to declare that a property contains a datastore
key value. You can optionally provide the kind argument to validate that all keys

226 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

3 If you’ve used the older ext.db library, you may be familiar with its “reference properties” feature. This
feature was dropped for ndb to make key handling easier to understand. Some use cases for reference proper‐
ties are better met by ndb’s structured properties feature.

assigned to the property have the same kind. As with other property types, you can
use the repeated=True argument to store multiple keys:3

class Author(ndb.Model):
 surname = ndb.StringProperty(required=True)
 # ...

class Book(ndb.Model):
 author_keys = ndb.KeyProperty(kind=Author, repeated=True)

a1 = Author(surname='Aniston')
a2 = Author(surname='Boggs')
a3 = Author(surname='Chavez')
ndb.put_multi([a1, a2, a3])

b = Book()
b.author_keys = [a1.key, a2.key, a3.key]
b.put()

The kind argument to the ndb.KeyProperty constructor takes either a model class or
the kind name as a string. (This is generally true in several places in ndb that take a
model class. Using a class instead of a string gives some added protection against typ‐
ing errors.) You can use a string if you want an entity to store keys for its own kind.

A datastore key is just a value. Storing one does not require that an entity exists with
that key. Because an entity’s key does not change, a key reference to an existing entity
will remain valid until the entity is deleted.

Key property values are queryable and orderable like any other value. In the data cre‐
ated in the preceding example, you can find every Book written by an Author with a
query on entities of the kind Book and a filter on the author_keys property.

Storing a list of keys is one way to model a many-to-many relationship, like the rela‐
tionship between books and authors. Another method is to store a separate entity to
represent the relationship itself, with the keys of both parties. This method can be a
bit more cumbersome, especially if relationships need to be updated in transactions.
But it avoids having to extend existing entities when introducing new relationships. It
also makes it easier to form queries about the relationships themselves.

Model Inheritance
In data modeling, it’s often useful to derive new kinds of objects from other kinds.
The game world may contain many different kinds of carryable objects, with shared

Model Inheritance | 227

www.it-ebooks.info

http://www.it-ebooks.info/

properties and features common to all objects you can carry. Because you implement
classes from the data model as Python classes, you’d expect to be able to use inheri‐
tance in the implementation to represent inheritance in the model. And you can,
sort of.

If you define a class based on either ndb.Model or ndb.Expando, you can create other
classes that inherit from that data class, like so:

class Carryable(ndb.Model):
 weight = ndb.IntegerProperty()
 location = ndb.KeyProperty(kind=Location)

class Bottle(Carryable):
 contents = ndb.StringProperty()
 amount = ndb.IntegerProperty()
 is_closed = ndb.BooleanProperty()

The subclass inherits the property declarations of the parent class. A Bottle has five
property declarations: weight, location, contents, amount, and is_closed.

Objects based on the child class will be stored as entities whose kind is the name of
the child class. The datastore has no notion of inheritance, and so by default will not
treat Bottle entities as if they are Carryable entities. This is mostly significant for
queries, and we have a solution for that in the next section.

If a child class declares a property already declared by a parent class, the child class
declaration overrides the parent class. Take care when doing this that your code is
using the correct value type for the child class.

A model class can inherit from multiple classes, using Python’s own support for mul‐
tiple inheritance:

class Pourable(ndb.Model):
 contents = ndb.StringProperty()
 amount = ndb.IntegerProperty()

class Bottle(Carryable, Pourable):
 is_closed = ndb.BooleanProperty()

The rules for inheriting property declarations correspond with the rules for class
member variables in Python. When a property declaration is accessed, parent classes
are searched in the order they are specified, left to right. For example, if Pourable had
a weight property declared as an ndb.FloatProperty and Carryable declared
weight as an ndb.IntegerProperty, Bottle would use the weight declaration from
the leftmost class mentioned in its list of parents:

class Carryable(ndb.Model):
 location = ndb.KeyProperty(kind=Location)
 weight = ndb.IntegerProperty()

228 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

class Pourable(ndb.Model):
 contents = ndb.StringProperty()
 amount = ndb.IntegerProperty()
 weight = ndb.FloatProperty()

class Bottle(Pourable, Carryable):
 # Pourable.weight (float) wins over Carryable.weight (int)
 # ...

b = Bottle()
b.weight = 3.4 # OK

class Bottle(Carryable, Pourable):
 # Carryable.weight (int) wins over Pourable.weight (float)
 # ...

b = Bottle()
b.weight = 3.4 # datastore_errors.BadValueError: Expected integer

Parents that themselves share a common ancestor class form a “diamond inheritance”
pattern. This is supported, and resolved in the usual way:

class GameObject(ndb.Model):
 name = ndb.StringProperty()
 location = ndb.KeyProperty(kind='Location')

class Carryable(GameObject):
 weight = ndb.IntegerProperty()

class Pourable(GameObject):
 contents = ndb.StringProperty()
 amount = ndb.IntegerProperty()

class Bottle(Carryable, Pourable):
 is_closed = ndb.BooleanProperty()

Queries and PolyModels
The datastore knows nothing of our modeling classes and inheritance. Instances of
the Bottle class are stored as entities of the kind 'Bottle', with no inherent knowl‐
edge of the parent classes. It’d be nice to be able to perform a query for Carryable
entities and get back Bottle entities and others. That is, it’d be nice if a query could
treat Bottle entities as if they were instances of the parent classes, as Python does in
our application code. We want polymorphism in our queries.

Queries and PolyModels | 229

www.it-ebooks.info

http://www.it-ebooks.info/

For this, the data modeling API provides a special base class: ndb.PolyModel. Model
classes using this base class support polymorphic queries. Consider the Bottle class
defined previously. Let’s change the base class of GameObject to ndb.PolyModel, like
so:

from google.appengine.ext.ndb import polymodel

class GameObject(polymodel.PolyModel):
 # ...

We can now perform queries for any kind in the hierarchy, and get the expected
results:

location_key = ndb.Key('Location', 'babbling brook')

b = Bottle(location=location_key, weight=125)
b.put()

...

q = Carryable.query()
q = q.filter(GameObject.location == location_key)
q = q.filter(Carryable.weight > 100)

for obj in q:
 # obj is a carryable object that is at the babbling brook
 # and weighs more than 100 kilos.
 # ...

This query can return any Carryable, including Bottle entities. The query can use
filters on any property of the specified class (such as weight from Carryable) or par‐
ent classes (such as location from GameObject).

Behind the scenes, polymodel.PolyModel does three clever things differently from its
cousins:

• Objects of the class GameObject or any of its child classes are all stored as entities
of the kind 'GameObject'.

• All such objects are given a property named class_ that represents the inheri‐
tance hierarchy starting from the root class. This is a multivalued property, where
each value is the name of an ancestor class, in order.

• Queries for objects of any kind in the hierarchy are translated by the
polymodel.PolyModel class into queries for the base class, with additional equal‐
ity filters that compare the class being queried to the class property’s values.

In short, polymodel.PolyModel stores information about the inheritance hierarchy
on the entities, then uses it for queries to support polymorphism.

230 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

Each model class that inherits directly from polymodel.PolyModel is the root of a
class hierarchy. All objects from the hierarchy are stored as entities whose kind is the
name of the root class. As such, your data will be easier to maintain if you use many
root classes to form many class hierarchies, as opposed to putting all classes in a sin‐
gle hierarchy. That way, the datastore viewer and bulk loading tools can still use the
datastore’s built-in notion of entity kinds to distinguish between kinds of objects.

Creating Your Own Property Classes
The property declaration classes serve several functions in your data model:

Value validation
The model calls the class when a value is assigned to the property, and the class
can raise an exception if the value does not meet its conditions.

Type conversion
The model calls the class to convert from the value type used by the app (the user
value) to one of the core datastore types for storage (the base value), and back
again.

Automatic values
The model calls the class to store the final value on the entity, giving it an oppor‐
tunity to calculate the final value to be stored.

Every property declaration class inherits from the ndb.Property base class. This class
implements features common to all property declarations, including support for the
common constructor arguments (such as required and indexed). Declaration classes
override methods and members to specialize the validation and type conversion rou‐
tines.

When making your own property declaration classes, it’s easiest to inherit from one
of the built-in classes, such as ndb.StringProperty, instead of inheriting from
ndb.Property directly. Choose the class whose type is most like the base value you
wish to store in the datastore.

Validating Property Values
Here is a simple property declaration class. It accepts any unicode value, and stores it
as a datastore short string (the default behavior for Python unicode values). Because
it stores a short string, it inherits from ndb.StringProperty:

class PlayerNameProperty(ndb.StringProperty):
 def _validate(self, value):
 if not isinstance(value, unicode):
 raise datastore_errors.BadValueError(

Creating Your Own Property Classes | 231

www.it-ebooks.info

http://www.it-ebooks.info/

 'Expected unicode, got {}'.format(value))
 return value

And here is how you would use the new property declaration:

class Player(ndb.Model):
 player_name = PlayerNameProperty()

p = Player()
p.player_name = u'Ned Nederlander'

p.player_name = 12345 # BadValueError: int is not unicode
p.player_name = 'Ned' # BadValueError: str is not unicode

The PlayerNameProperty class overrides the default _validate() method, which
takes the value to validate as its argument and either returns the value or raises an
exception. Just like a custom validator function set by the declaration, the default
validator can return a different value to act as a filter. The property class has other
opportunities to perform value conversions, so this is best left to just perform valida‐
tion.

Importantly, _validate() does not call the parent class’s base method (super), and it
must not call it even if the parent class is another property class with its own valida‐
tor. The property API is “stackable.” The ndb.Property base class invokes the valida‐
tors for all classes in the inheritance chain automatically, starting with the closest
class and working its way up to the base class. Each validator receives the result of the
previous validator. This makes it easy to define new properties in terms of existing
properties without worrying about the details of how the base property is imple‐
mented.

The _validate() method is not called if the property value is None. Any property
that is not declared as required accepts a None value, and this value is not validated.
As we’ll see later, the property class can substitute a different value for None in a dif‐
ferent method.

So far, this example doesn’t do much beyond ndb.StringProperty other than require
a unicode as the user value. This by itself can be useful to give the property type a
class for future expansion. Let’s add a requirement that player names be between 6
and 30 characters in length:

class PlayerNameProperty(ndb.StringProperty):
 def _validate(self, value):
 if not isinstance(value, unicode):
 raise datastore_errors.BadValueError(
 'Expected unicode, got {}'.format(value))
 if len(value) < 6 or len(value) > 30:
 raise datastore_errors.BadValueError(
 'Value must be between 6 and 30 characters.')
 return value

232 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

The new validation logic disallows strings with an inappropriate length:

p = Player()
p.player_name = 'Ned' # BadValueError: length < 6
p.player_name = 'Ned Nederlander' # OK

p = Player(player_name = 'Ned') # BadValueError: length < 6

Marshaling Value Types
The datastore supports a fixed set of core value types for properties, listed in
Table 6-1. A property declaration can support the use of other types of values in the
attributes of model instances by marshaling between the desired type and one of the
core datastore types. The value provided by and to the application code is called the
user value, and the value sent to and received from the datastore is called the base
value.

The _to_base_type() method takes a user value and returns a base value. The
_from_base_type() method takes a base value and returns a user value. You can
override these to customize their default behavior, which is to return the value
unmodified.

Like the _validate() method, the property API stacks these methods. They must not
call their parent methods themselves. When ndb needs to convert a user value to a
base value, it calls the closest class’s _to_base_type() with the user value, then passes
the result of that to the parent method, and so on up to the base class. When it needs
to convert a base value to a user value, it goes in the opposite direction: first it calls
the base class’s _from_base_type() method, then it passes the result to the next child
class in line, and so on down to the bottommost child class.

Say we wanted to represent player name values within the application using a Player
Name value class instead of a simple string. Each player name has a surname and an
optional first name. We can store this value as a single property, using the property
declaration to convert between the user value (PlayerName) and an appropriate base
value (such as unicode):

class PlayerName(object):
 def __init__(self, first_name, surname):
 self.first_name = first_name
 self.surname = surname

 def is_valid(self):
 return (isinstance(self.first_name, unicode)
 and isinstance(self.surname, unicode)
 and len(self.surname) >= 6)

class PlayerNameProperty(ndb.StringProperty):
 def _validate(self, value):

Creating Your Own Property Classes | 233

www.it-ebooks.info

http://www.it-ebooks.info/

 if not isinstance(value, PlayerName):
 raise datastore_errors.BadValueError(
 'Expected PlayerName, got {}'.format(value))
 # Let the data class have a say in validity.
 if not value.is_valid():
 raise datastore_errors.BadValueError(
 'Must be a valid PlayerName')
 # Disallow the serialization delimiter in the fields.
 if value.surname.find('|') != -1 or value.first_name.find('|') != -1:
 raise datastore_errors.BadValueError(
 'PlayerName surname and first_name cannot contain a "|".')
 return value

 def _to_base_type(self, value):
 return '|'.join([value.surname, value.first_name])

 def _from_base_type(self, value):
 (surname, first_name) = value.split('|')
 return PlayerName(first_name=first_name, surname=surname)

And here’s how you’d use it:

p = Player()
p.player_name = PlayerName(u'Ned', u'Nederlander')

p.player_name = PlayerName(u'Ned', u'Neder|lander')
 # BadValueError, surname contains serialization delimiter

p.player_name = PlayerName(u'Ned', u'Neder')
 # BadValueError, PlayerName.is_valid() == False, surname too short

p.player_name = PlayerName('Ned', u'Nederlander')
 # BadValueError, PlayerName.is_valid() == False, first_name is not unicode

Here, the application value type is a PlayerName instance, and the datastore value
type is that value encoded as a Unicode string. The encoding format is the surname
field, followed by a delimiter, followed by the first_name field. We disallow the
delimiter character in the surname using the _validate() method. (Instead of disal‐
lowing it, we could also escape it in _to_base_value() and unescape it in
_from_base_value().)

In this example, PlayerName(u'Ned', u'Nederlander') is stored as this Unicode
string:

Nederlander|Ned

The datastore value puts the surname first so that the datastore will sort PlayerName
values first by surname, then by first name. In general, you choose a serialization for‐
mat that has the desired ordering characteristics for your custom property type. The
core type you choose also impacts how your values are ordered when mixed with
other types, though if you’re modeling consistently this isn’t usually an issue.

234 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

If the conversion from the application type to the datastore type may fail, put a check
for the conversion failure in the _validate() method. This way, the error is caught
when the bad value is assigned, instead of when the object is saved.

Accepting Arguments
As we’ve seen in several of the built-in property declaration classes, it is useful to
allow the user to customize the behavior of a property declaration on a per-use basis
by providing arguments to the constructor.

Let’s extend PlayerNameProperty with a require_first_name customization argu‐
ment that defaults to False. When True, the _validate() method rejects PlayerName
values that do not have a first_name:

class PlayerNameProperty(ndb.StringProperty):
 _attributes = ndb.Property._attributes + ['require_first_name']

 @utils.positional(1 + Property._positional)
 def __init__(self, name=None, require_first_name=False, **kwds):
 super(PlayerNameProperty, self).__init__(name=name, **kwds)
 self._require_first_name = require_first_name

 def _validate(self, value):
 # ...

 if self._require_first_name and not value.first_name:
 raise datastore_errors.BadValueError(
 'PlayerName must have a first_name')

 # ...

We made three changes:

• Set the _attributes class member variable (a list of strings) to
ndb.Property._attributes extended with the new attribute

• Overrode the __init__() initializer to accept a require_first_name argument,
call the parent initializer, then set the _require_first_name instance variable
(shadowing the class member variable)

• Extended _validate() to test the instance variable and require that
value.first_name be nonempty, if requested by the declaration

The _attributes class member variable is only used to generate a string representa‐
tion of the property instance for debugging purposes. It doesn’t affect how you use
the argument, but it’s a convenient way to extend internal error messages involving
custom properties.

Creating Your Own Property Classes | 235

www.it-ebooks.info

http://www.it-ebooks.info/

There is no magic in how we’re collecting and storing the argument. We’re overriding
the initializer, adding a keyword argument, and storing it on the instance for later
use. There is a small amount of crazy stuff here to comply with requirements internal
to the Property class, specifically a name argument that must be the first positional
argument to the initializer. The model class populates this with the property name
(the class attribute) when setting up the declaration. Briefly:

• @utils.positional(1 + Property._positional) tells Property’s internal argu‐
ment handling that self and name are positional arguments. Our custom argu‐
ment is a keyword-only argument.

• def __init__(self, name=None, …, **kwds): preserves the self and name
arguments as the first positional arguments, followed by our custom keyword
arguments, then a dict to consume the remaining keyword arguments.

• super(PlayerNameProperty, self).__init__(name=name, **kwds) calls the
parent class’s initializer with the name in the first spot, followed by the keyword
arguments we didn’t reserve for ourselves. In typical Python 2.7 fashion, Player
NameProperty is the name of the property class we are defining.

You’d use this feature as follows:

class Player(ndb.Model):
 player_name = PlayerNameProperty(require_first_name=True)

p = Player()
p.player_name = PlayerName(
 first_name=u'Ned', surname=u'Nederlander')
 # OK

p.player_name = PlayerName(u'', u'Madonna')
 # BadValueError: first_name is empty, but required by the declaration

Implementing Automatic Values
As we saw earlier, the ndb.DateTimeProperty has a special feature where if the user
sets auto_now=True, the value is automatically updated to the current system time
when the entity is saved. It does this in a hook called _prepare_for_put(). You can
define this method in your property class to achieve a similar effect.

Why not put this in _validate() or _to_base_value()? This might work, depending
on what you’re trying to do. Keep in mind that these methods are not called if the
value is None (or just isn’t set). In the case of auto_now, it is important that the auto‐
matic value be set even if the app hasn’t set a value for the property.

236 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

Continuing our PlayerNameProperty example, let’s add an auto_ned parameter. If
True, always use the name “Ned Nederlander” for the value, regardless of whether or
how it was set by the application:

class PlayerNameProperty(ndb.StringProperty):
 _attributes = ndb.Property._attributes + ['require_first_name', 'auto_ned']

 def __init__(self, name=None,
 require_first_name=False,
 auto_ned=False,
 **kwds):
 super(PlayerNameProperty, self).__init__(name=name, **kwds)
 self._require_first_name = require_first_name
 self._auto_ned = auto_ned

 # ...

 def _prepare_for_put(self, entity):
 if self._auto_ned:
 self._store_value(entity, PlayerName(u'Ned', u'Nederlander'))

ndb calls the _prepare_for_put() method of each declared property prior to storing
the entity in the datastore. This is another stacking API, and must not call the parent
class. The method takes the entire entity (not just the property) as its argument, and
is allowed to examine the entity and update the property value.

To update the value, we call the property class’s own self._store_value(entity,
value) method. The value in this case is a user value. ndb will pass this value through
_to_base_value() as needed. Alternatively, you can pass a base value by wrapping it
in ndb._BaseValue(val). This tells ndb that it doesn’t need converting. In this case,
we create a PlayerName user value, and let _to_base_value() do its thing.

Here’s how you’d use this silly new option:

class Player(ndb.Model):
 player_name = PlayerNameProperty(auto_ned=True)

p = Player()
p.player_name = PlayerName(u'', u'Madonna')

p.put() # p.player_name is now PlayerName(u'Ned', u'Nederlander')

That gets us behavior similar to ndb.DateTimeProperty’s auto_now. What if we want
something like auto_now_add, which only sets the value if the value is not set? We can
use self._has_value(entity) to test whether a value is present. Here is an imple‐
mentation of an auto_ned_add feature for PlayerNameProperty:

class PlayerNameProperty(ndb.StringProperty):
 _attributes = ndb.Property._attributes + ['require_first_name',
 'auto_ned', 'auto_ned_add']

Creating Your Own Property Classes | 237

www.it-ebooks.info

http://www.it-ebooks.info/

 def __init__(self, name=None,
 require_first_name=False,
 auto_ned=False,
 auto_ned_add=False,
 **kwds):
 super(PlayerNameProperty, self).__init__(name=name, **kwds)
 self._require_first_name = require_first_name
 self._auto_ned = auto_ned
 self._auto_ned_add = auto_ned_add

 # ...

 def _prepare_for_put(self, entity):
 if (self._auto_ned or
 (self._auto_ned_add and not self._has_value(entity))):
 self._store_value(entity, PlayerName(u'Ned', u'Nederlander'))

And here is how to use it:

class Player(ndb.Model):
 player_name = PlayerNameProperty(auto_ned_add=True)

p = Player()
p.put() # p.player_name is PlayerName(u'Ned', u'Nederlander')

p = Player()
p.player_name = PlayerName(u'', u'Madonna')
p.put() # p.player_name is PlayerName(u'', u'Madonna')

Automatic Batching
Calling the datastore service each time your application reads or writes an entity takes
a significant amount of time. Especially when making synchronous calls, where your
app code waits for the call to succeed before proceeding, calling the datastore effi‐
ciently can make a big difference to your application’s performance. (See Chapter 17
for more information about calling services asynchronously.) The ndb library knows
how to batch calls to the datastore automatically, and does so invisibly to your app.

We’ve already seen how to initiate a batch call from the application code. Consider
this example:

class Entity(ndb.Model):
 pass

e1 = Entity()
e1.put()

e2 = Entity()
e2.put()

238 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

e3 = Entity()
e3.put()

You could paraphrase this to use an explicit batch call to ndb.put_multi(), like so:

class Entity(ndb.Model):
 pass

e1 = Entity()
e2 = Entity()
e3 = Entity()

ndb.put_multi([e1, e2, e3])

The batch call makes one remote procedure call to store all three entities, which is
more efficient than making a remote procedure call for each entity.

Brilliantly, ndb knows better than to make three RPCs in the first example. ndb keeps
track of how your application code manipulates datastore data and will optimize calls
to the datastore as batch calls automatically whenever it can. It even knows how to do
this with more complex calling patterns, such as code that interleaves gets and puts of
overlapping data. The library preserves all transactional guarantees, and is generally
more careful with calls that participate in a transaction.

In other words, thanks to ndb, the first example is generally equivalent to the second
example with regards to how the datastore is called. Your code can simply call ndb
when it is convenient and obvious to do so, and ndb will make it as fast as possible.

Automatic Caching
Another major technique for optimizing datastore calls is to use a cache: keep the
data in memory, and prefer to read from memory than from the datastore. ndb uses
two separate strategies for caching datastore data: an in-context cache and the dis‐
tributed memcache.

The in-context cache is a temporary cache that lives in RAM, and lasts as long as the
request handler is running, from request to response. Each request handler gets its
own in-context cache. (It does not persist on the instance, and is not shared between
handlers.) Like automatic batching, the in-context cache is something you might
build yourself to save on calls to the datastore if ndb weren’t doing it for you. For
example:

def add_props(id):
 entity = ndb.Key('Entity', id).get()
 return entity.prop1 + entity.prop2

def mult_props(id):
 entity = ndb.Key('Entity', id).get()
 return entity.prop1 * entity.prop2

Automatic Caching | 239

www.it-ebooks.info

http://www.it-ebooks.info/

sum = add_props('foo')
product = mult_props('foo')

Here we have two call paths that want to operate on the same entity. These call paths
don’t know anything about each other, and probably shouldn’t: they’re easily under‐
stood as separate functions that, internally, access the datastore and perform some
calculation. Without ndb’s help, calling each path would result in two calls to the data‐
store to read the same data twice. You could try to fix this yourself with a little in-
memory cache of your own:

(This is unnecessary with ndb.)
CACHE = {}
def get_entity(id):
 if id not in CACHE:
 CACHE[id] = ndb.Key('Entity', id).get()
 return CACHE[id]

def add_props(id):
 entity = get_entity(id)
 return entity.prop1 + entity.prop2

def mult_props(id):
 entity = get_entity(id)
 return entity.prop1 * entity.prop2

sum = add_props('foo')
product = mult_props('foo')

If you trace through these calls, you’ll see that ndb.Key('Entity', 'foo').get() is
only called once, and the second access uses CACHE. This puts undue burden on your
code to perform a basic bookkeeping task.

By default, ndb will handle the first example like the second example, using its in-
context cache for the second call to get() with the same key. This is usually what you
want, at least for short-lived request handlers. It assumes that the request handler
prefers to see the same version of an entity when the entity is requested twice, even if
another process has updated the entity between the calls. Once again, ndb is smart
enough to do the right thing when updating data or performing transactions. It’s a
free performance benefit when the benefit makes sense, and you don’t have to contort
your code in weird ways to get it.

In addition to the in-context cache, ndb uses App Engine’s distributed memcache ser‐
vice for further performance benefits across multiple request handlers. We’ll discuss
this service in more detail in Chapter 12. For common cases where you would nor‐
mally store a datastore entity in memcache by its key to avoid a call to the datastore,
it’s best to rely on ndb’s built-in automatic support for doing just that. ndb has robust
logic for determining when to read from memcache and when to invalidate the

240 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

cached data and go straight to the datastore. And again, ndb is careful when it comes
to transactions.

Setting the Cache Policy for a Kind
You don’t always want to use a cache. Especially with memcache, your code may need
more direct control over when the app goes to the datastore for fresh data versus
reading from the cache, which may have stale data. You can tell ndb to not use either
the in-context cache, memcache, or both under certain circumstances.

Most often, you’ll want to set this cache policy based on the kind of the data. The easi‐
est way to do this is to set special class variables on the ndb.Model subclass for the
kind. For example:

class Entity(ndb.Model):
 _use_cache = False
 _use_memcache = False

e1 = ndb.Key('Entity', 'foo').get() # calls the datastore

...

e2 = ndb.Key('Entity', 'foo').get() # calls the datastore

If cls._use_cache is False, ndb never uses the in-context cache for entities of this
kind. If cls._use_memcache is False, ndb never uses memcache automatically for
entities of this kind. As in this example, if both are False, ndb goes straight to the
datastore when asked to do so.

Putting memcache in front of the datastore means that when a datastore entity
changes, there is a period of time where memcache may have old data, and therefore
request handlers reading that data from memcache will not see the change. When ndb
stores an entity in memcache, it sets an upper bound for this period of time, some‐
times called a timeout, an expiration time, or the time-to-live (TTL). After that period
has elapsed (or possibly sooner), memcache evicts the value. The next process to use
ndb to read the entity will call the datastore, and update memcache with the latest
data.

To adjust the memcache timeout for entities of a kind, set the cls._memcache_time
out class member, as a number of seconds:

class Entity(ndb.Model):
 _memcache_timeout = 20 * 60 # 20 minutes

ndb does attempt to invalidate memcache values when the corresponding datastore
entity is updated or deleted. However, this is not guaranteed. The memcache does not
participate in datastore transactions, and so the datastore update may succeed while

Automatic Caching | 241

www.it-ebooks.info

http://www.it-ebooks.info/

the memcache update may fail. The timeout ensures that memcache will eventually
forget its stale data.

Even short cache timeouts can be useful. If an entity is read once
per second, a timeout of two minutes replaces 99.16% of datastore
calls with memcache calls. The data that is read will be at most two
minutes old.

In addition to disabling the in-context cache or memcache (or both) for a kind, you
can also disable the datastore. Why would you do that? With one or both caches
enabled and the datastore disabled, ndb becomes a great way to cache structured data.
Caches are not persistent storage, but they are useful to avoid repeating calculations
or expensive network operations, just as they are useful to avoid unnecessary trips to
the datastore. To disable datastore storage for a kind, use the cls._use_datastore
class member.

More Complex Cache Policies
You can set a cache policy based on more complex criteria than just the kind of an
entity. To do so, you define a function that takes the ndb.Key of an entity being
manipulated and returns True if caching is allowed for that entity, or False if not.
You install this cache policy using a method on the context object, which you obtain
from the function ndb.get_context():

def never_cache_test_data(key):
 id = key.string_id()
 return not id or not id.startswith('test_')

ctx = ndb.get_context()
ctx.set_memcache_policy(never_cache_test_data)

This example sets a global cache policy for memcache that says any entity (of any
kind) that has a string ID that begins with test_ should never be stored in
memcache. This policy applies to all uses of ndb by this request handler, and only
applies to the use of memcache, not the in-context cache or the datastore.

As written, this example overrides the default global policy for memcache, which is to
test the _use_memcache member variable of the kind model class. If a model class sets
_use_memcache, it will be ignored. Your global cache policy function can fall back to
this behavior by calling ndb.Context.default_memcache_policy():

def never_cache_test_data(key):
 id = key.string_id()
 if id.startswith('test_'):
 return False
 return ndb.Context.default_memcache_policy(key)

242 | Chapter 9: Data Modeling with ndb

www.it-ebooks.info

http://www.it-ebooks.info/

ctx = ndb.get_context()
ctx.set_memcache_policy(never_cache_test_data)

The equivalent functions for the in-context cache are ctx.set_cache_policy() to set
the policy, and ndb.Context.default_cache_policy() to fall back on the default
global policy. For the datastore, these are ctx.set_datastore_policy() and
ndb.Context.default_datastore_policy(), respectively.

You can also set a global policy for the memcache timeout. The policy function takes
a key and returns the timeout as a number of seconds. To register this policy, pass the
function to ctx.set_memcache_timeout_policy().

Ignoring Caches per Call
Finally, there’s an easy way to tell ndb to ignore one of the caches on a per-call basis.
Methods that call the datastore accept use_cache, use_memcache, use_datastore,
and memcache_timeout keyword arguments. Set these to override the established
cache policy for the purposes of the call:

entity = ndb.Key('Entity', 'foo').get(use_memcache=False)

Remember that the default cache policies use all three of the data‐
store, in-context cache, and memcache. If you don’t want one or
more of these in some cases, you must establish an alternative
cache policy using one of these techniques.

Automatic Caching | 243

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Datastore Administration

Your data is the heart of your application, so you’ll want to take good care of it. You’ll
want to watch it, and understand how it grows and how it affects your app’s behavior.
You’ll want to help it evolve as your app’s functionality changes. You may even want
up-to-date information about data types and sizes. And you’ll want to poke at it, and
prod it into shape using tools not necessarily built into your app.

App Engine provides a variety of administrative tools for learning about, testing, pro‐
tecting, and fixing your datastore data. In this chapter, we look at a few of these tools,
and their associated best practices.

Inspecting the Datastore
The first thing you might want to do with your app’s datastore is see what’s in it. Your
app provides a natural barrier between you and how your data is stored physically in
the datastore, so many data troubleshooting sessions start with pulling back the cov‐
ers and seeing what’s there.

In the Storage section of the Cloud Console is a set of panels for Cloud Datastore
(Figure 10-1). This is your main view of your project’s datastore entities. The Dash‐
board summarizes how your storage space is used, including space for entities and
their properties, as well as space for built-in and custom (composite) indexes. Select a
kind from the drop-down menu to see a breakdown by named property.

245

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-1. The Cloud Datastore Dashboard in the Cloud Console

In the Query panel, you can browse entities by kind. You can also apply query filters
to this view by clicking the Filters button. The panel knows the names of all of the
indexed properties of entities of the given kind, making it easy to compose queries on
existing properties.

From any of these panels, you can click the Create Entity button to create a new
entity. You can pick from a list of existing kinds, and property names and types
known to be used with existing entities will appear automatically. You can also create
an entity of a new kind, and add and remove arbitrary properties. Currently, only
simple keys (without ancestors) are supported for entities created via the Console.

When browsing entities in the Query panel, you can click on the key of an entity to
view its properties in more detail. You can also edit the properties in this view, within
the limitations of the Console’s property editor.

The property value types supported by the Console for property editing and query
filters include the following:

246 | Chapter 10: Datastore Administration

www.it-ebooks.info

http://www.it-ebooks.info/

A date and time
You enter a date and time into the form field using the format YYYY-MM-DD
HH:MM:SS, such as 2014-12-31 23:59:59. As with storing datetime values in gen‐
eral, there is no time zone component.

A string
Note that string values in the form field have leading and trailing spaces trunca‐
ted, and there is no way to specify a value with leading or trailing spaces.

A number
The datastore treats integers and floating-point values as distinct types. In these
panels, a number value containing a decimal point (5.0) is interpreted as a
floating-point value. Without the point (5), it’s an integer.

A Boolean value
Here, the panel helps you out and displays a drop-down menu for the value
(either true or false).

A Google user
The value is the current email address of the corresponding account, whether an
account for that address exists or not.

A datastore key
A key value is a sequence of kind/ID pairs, with single quotes around kinds and
string IDs, wrapped in a Key(…) specifier. For example: Key('MessageBoard',
'The_Archonville_Times', 'Message', 12345)

Currently, the Console does not support null values and geographical point values in
the property editor and query composer. It also doesn’t support multivalued proper‐
ties. You also cannot create or edit blob values (unindexed binary values) with this
interface.

The datastore panels are useful for inspecting entities and troubleshooting data
issues, and may be sufficient for administrative purposes with simple data structures.
However, you will probably want to build a custom administrative panel for browsing
app-specific data structures and performing common administrative tasks.

Applying filters in the Query panel performs a datastore query just
as your application does. These filters are subject to the same
restrictions, and use the same indexes as the app. If a set of filters
requires a custom index (such as inequality filters on two distinct
properties), that index must already be in the app’s deployed index
configuration to support querying with those filters from the Con‐
sole. See Chapter 7.

Inspecting the Datastore | 247

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Indexes
When you upload the datastore index configuration for an app, the datastore begins
building indexes that appear in the configuration but do not yet exist. This process is
not instantaneous, and may take many minutes for new indexes that contain many
rows. The datastore needs time to crawl all the entities to build the new indexes.

You can check on the build status of new indexes using the Cloud Console, in the
Indexes section. An index being built appears with a status of “Building.” When it is
ready, the status changes to “Serving.” Figure 10-2 shows a simple example of the
Indexes section.

Figure 10-2. The Cloud Datastore Indexes panel in the Cloud Console

If an index’s build status is “Error,” the index build failed. It’s possible that the failure
was due to a transient error. To clear this condition, you must first remove the index
from your configuration and then upload the new configuration. It is also possible for
an index build to fail due to an entity reaching its index property value limit. In these
cases, you can delete the entities that are causing the problem. Once that is done, you
can add the index configuration back and upload it again.

If your application performs a query while the index for the query is building, the
query will fail. You can avoid this by uploading the index configuration, waiting until
the index is built, and then making the app that uses that query available. The most

248 | Chapter 10: Datastore Administration

www.it-ebooks.info

http://www.it-ebooks.info/

convenient way to do this depends on whether you upload the new application in a
new version:

• If you are uploading the new application with the version identifier that is cur‐
rently the “default” version, upload the index configuration alone using the
appcfg.py update_indexes command. When the indexes are built, upload the
app.

• If you are uploading the application as a new version, or as a version that isn’t the
default and that nobody is actively using, you can safely upload the application
and index configuration together (appcfg.py update). Wait until the indexes are
built before making the new version the default.

If you upload index configuration that does not mention an index that has already
been built, the datastore does not delete the unused index, as it might still be in use by
an older version of the app. You must tell App Engine to purge unused indexes. To do
this, run the AppCfg command with the vacuum_indexes option. For instance:

appcfg.py vacuum_indexes app-dir

App Engine will purge all custom indexes not mentioned in the index configuration
uploaded most recently. This reclaims the storage space used by those indexes.

As we saw earlier, the development server tries to be helpful by cre‐
ating new index configuration entries for queries that need them as
you’re testing your app. The development server will never delete
an index configuration. As your app’s queries change, this can
result in unnecessary indexes being left in the file. You’ll want to
look through this file periodically, and confirm that each custom
index is needed. Remove the unused index configuration, upload
the file, and then vacuum indexes.

Accessing Metadata from the App
There are several ways to get information about the state of your datastore from
within the application itself. The information visible in the Datastore Dashboard
panel of the Cloud Console is also readable and queryable from entities in your app’s
datastore. Similarly, the facilities that allow the Query panel to determine the current
kinds and property names are available to your app in the form of APIs and
queryable metadata. You can also use APIs to get additional information about entity
groups, index build status, and query planning.

We won’t describe every metadata feature here. Instead, we’ll look at a few representa‐
tive examples. You can find the complete details in the official App Engine documen‐
tation.

Accessing Metadata from the App | 249

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Statistics
App Engine gathers statistics about the contents of the datastore periodically, usually
about once a day. It stores these statistics in datastore entities in your application. The
Datastore Dashboard panel of the Cloud Console gets its information from these
entities. Your app can also fetch and query these entities to access the statistics.

In Python, each statistic has an ndb data model class, in the
google.appengine.ext.ndb.stats module. You use these model classes to perform
queries, like you would any other query. The actual kind name differs from the model
class name.

Here’s an example in Python that queries storage statistics for each entity kind:

import logging
from google.appengine.ext.ndb import stats

...
 kind_stats = stats.KindStat.query()
 for kind_stat in kind_stats:
 logging.info(
 'Stats for kind %s: %d entities, '
 'total %d bytes (%d entity bytes)',
 kind_stat.kind_name, kind_stat.count,
 kind_stat.bytes, kind_stat.entity_bytes)

Here’s another example that reports the properties per kind taking up more than a
terabyte of space:

import logging
from google.appengine.ext.ndb import stats

...
 q = stats.KindPropertyNameStat.query()
 q = q.filter('bytes >', 1024 ** 4)
 for kind_prop in q:
 logging.info(
 'Large property detected: %s:%s total size %d',
 kind_prop.kind_name, kind_prop.property_name,
 kind_prop.bytes)

Every statistic entity has a count property, a bytes property, and a timestamp prop‐
erty. count and bytes represent the total count and total size of the unit represented
by the entity. The statistic for a kind has a bytes property equal to the total amount of
storage used by entities of the kind for properties and indexes. The timestamp prop‐
erty is the last time the statistic entity was updated. Statistic entity kinds have addi‐
tional properties specific to the kind.

The __Stat_Total__ kind (represented in Python by the GlobalStat class) repre‐
sents the grand total for the entire app. The count and bytes properties represent the

250 | Chapter 10: Datastore Administration

www.it-ebooks.info

http://www.it-ebooks.info/

number of all entities, and the total size of all entities and indexes. These numbers are
broken down further in several properties: entity_bytes is the storage for just the
entities (not indexes), builtin_index_bytes and builtin_index_count are the total
size and number of indexed properties in just the built-in indexes, and compo
site_index_bytes and composite_index_count are the same for just custom (com‐
posite) indexes. There is only one __Stat_Total__ entity for the app.

The __Stat_Kind__ kind (KindStat) represents statistics for each datastore kind
individually, as existed at the time the statistics were last updated. There is one of
these statistic entities for each kind. The kind_name property is set to the kind name,
so you can query for a specific kind’s statistics, or you can iterate over all kinds to
determine which kinds there are. These entities have the same statistic properties as
__Stat_Total__.

The __Stat_PropertyName_Kind__ kind (KindPropertyNameStat) represents each
named property of each kind. The property_name and kind_name properties identify
the property and kind for the statistic. The statistic properties are count, bytes,
entity_bytes, builtin_index_bytes, and builtin_index_count.

For a complete list of the statistics entity kinds, see the official App Engine website.

Querying Metadata
The datastore always knows which namespaces, kinds, and property names are in use
by an application. Unlike statistics, this metadata is available immediately. Querying
this metadata can be slower than querying a normal entity, but the results reflect the
current state of the data.

Each namespace has an entity of the kind __namespace__. Each kind is a __kind__,
and each property name (regardless of kind) is a __property__. These entities have
no properties: all information is stored in the key name. For example, a __kind__
entity uses the kind name as its key name. (The full key is __kind__ / KindName.) A
__property__ entity has both the kind name and the property name encoded in its
key name.

This information is derived entirely from the built-in indexes. As such, only indexed
properties have corresponding __property__ entities.

These all have ndb model classes defined in the google.appengine.ext.ndb.meta
data module. They are named Namespace, Kind, and Property. The classes include
Python property methods for accessing names, as if they were datastore properties.
The module also provides several convenience functions for common queries.

Here’s a simple example in Python that lists all the kinds for which there is an entity,
using a convenience function to get the list of kind names:

Accessing Metadata from the App | 251

www.it-ebooks.info

http://www.it-ebooks.info/

import logging
from google.appengine.ext.ndb import metadata

...
 kinds = metadata.get_kinds()
 for k in kinds:
 logging.info('Found a datastore kind: %s', k)

Index Status and Queries
The Datastore Indexes panel of the Cloud Console reports on the indexes configured
for the app, and the serving status of each. The app can get this same information by
using the datastore API. A Python app can also ask the datastore which index was
used to resolve a query, after the query has been executed.

You ask for the state of indexes by calling the get_indexes() function of the
google.appengine.ext.ndb module. This function returns a list of tuples, each
representing an index. Each tuple contains an index object, and a state value.
The index object has the methods kind(), has_ancestor(), and properties(),
representing the latest uploaded index configuration. The state value is one of several
constants representing the index build states: datastore.Index.BUILDING, data
store.Index.SERVING, datastore.Index.DELETING, or datastore.Index.ERROR

(from the google.appengine.api.datastore module):

from google.appengine.api import datastore
from google.appengine.ext import ndb

...
 for index in ndb.get_indexes():
 if index.state != datastore.Index.SERVING:
 kind = index.definition.kind
 ancestor_str = ' (ancestor)' if index.definition.ancestor else ''

 index_props = []
 for prop in index.definition.properties:
 dir_str = ('ASC'
 if prop.direction == datastore.Index.ASCENDING
 else 'DESC')
 index_props.append(prop.name + ' ' + dir_str)
 index_property_spec = ', '.join(index_props)

 index_spec = '%s%s %s' % (kind, ancestor_str,
 index_property_spec)

 logging.info('Index is not serving: %s', index_spec)

An ndb query object has an index_list() method that returns a list of index objects
representing the indexes used to resolve the query. You must execute the query before

252 | Chapter 10: Datastore Administration

www.it-ebooks.info

http://www.it-ebooks.info/

calling this method, so it knows which indexes were involved in performing the
query.

Entity Group Versions
In Chapter 8, we described the datastore as using multiversioned optimistic concur‐
rency control, with the entity group as the unit of transactionality. Each time any
entity in an entity group is updated, the datastore creates a new version of the entity
group. If any process reads an entity in the entity group before the new version is
fully stored, the process simply sees the earlier version.

Each of these versions gets an ID number, and this number increases strictly and
monotonically. You can use the metadata API to get the entity group version number
for an entity.

This is the get_entity_group_version() function in the goo

gle.appengine.ext.ndb.metadata module. It takes an ndb.Key instance as an argu‐
ment, and returns an integer, or None if the given entity group doesn’t exist:

from google.appengine.ext import ndb
from google.appengine.ext.ndb import metadata

class MyKind(ndb.Expando):
 pass

...
 # Write to an entity group, and get its version number.
 parent = MyKind()
 parent.put()
 version = metadata.get_entity_group_version(parent.key)

 # Update the entity group by creating a child entity.
 child = MyKind(parent=parent)
 child.put()

 # The version number of the entire group has been incremented.
 version2 = metadata.get_entity_group_version(parent.key)

Remote Controls
One of the nice features of a relational database running in a typical hosting environ‐
ment is the ability to connect directly to the database to perform queries and updates
on a SQL command line or to run small administrative scripts. App Engine has a
facility for doing something similar, and it works for more than just the datastore:
you can call any live service on behalf of your application using tools running on your
computer. The tools do this using a remote proxy API.

Remote Controls | 253

www.it-ebooks.info

http://www.it-ebooks.info/

The proxy API is a request handler that you install in your app. It is restricted to
administrators. You run a client tool that authenticates as an administrator, connects
to the request handler, and issues service calls over the connection. The proxy per‐
forms the calls and returns the results.

App Engine includes versions of the proxy handler in the Python libraries. The client
library and related tools are also implemented in Python.

The remote shell tool opens a Python command prompt, with the App Engine
Python service libraries modified to use the remote API. You type Python statements
as they would appear in app code, and all calls to App Engine services are routed to
the live app automatically. This is especially useful in conjunction with Python apps,
where you can import your app’s own data models and request handler modules, and
do interactive testing or data manipulation. You can also write your own tools in
Python using the remote API, for repeated tasks.

The remote API is clever and useful, but it’s also slow: every service
call is going over the network from your local computer to the app,
then back. It is not suitable for running large jobs over arbitrary
amounts of data. For large data transformation jobs, you’re better
off building something that runs within the app, using task queues.

Let’s take a look at how to set up the proxy, how to use the remote Python shell, and
how to write a Python tool that calls the API.

Setting Up the Remote API
The remote API request handler is included in the runtime environment. To set it up,
you activate a built-in in app.yaml, like so:

builtins:
- remote_api: on

This establishes a web service endpoint at the URL /_ah/remote_api/. Only clients
authenticated using application administrator accounts can use this endpoint.

You can test this URL in a browser using the development server. Visit the URL (such
as http://localhost:8080/_ah/remote_api), and make sure it redirects to the fake
authentication form. Check the box to sign in as an administrator, and click Submit.
You should see this message:

This request did not contain a necessary header.

The remote API expects an HTTP header identifying the remote API protocol ver‐
sion to use, which the browser does not provide. But this is sufficient to test that the
handler is configured correctly.

254 | Chapter 10: Datastore Administration

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Remote Shell Tool
With the remote API handler installed, you can use a tool included with the Python
SDK to manipulate a live application’s services from an interactive Python shell. You
interact with the shell by using Python statements and the Python service APIs. This
tool uses the remote API handler.

To start a shell session, run the remote_api_shell.py command. As with the other
Python SDK commands, this command may already be in your command path:

remote_api_shell.py app-id

The tool prompts for your developer account email address and password. (Only reg‐
istered developers for the app can run this tool, or any of the remote API tools.)

By default, the tool connects to the application via the domain name app-
id.appspot.com, and assumes the remote API handler is installed with the URL
path /_ah/remote_api. To use a different URL path, provide the path as an argument
after the application ID:

remote_api_shell.py app-id /admin/util/remote_api

To use a different domain name, such as to use a specific application version, or to
test the tool with the development server, give the domain name with the -s … argu‐
ment:

remote_api_shell.py -s dev.app-id.appspot.com app-id

The shell can use any service API that is supported by the remote API handler. This
includes URL Fetch, memcache, Images, Mail, Google Accounts, and of course the
datastore. (As of this writing, XMPP is not supported by the remote API handler.)
Several of the API modules are imported by default for easy access.

The tool does not add the current working directory to the module load path by
default, nor does it know about your application directory. You may need to adjust
the load path (sys.path) to import your app’s classes, such as your data models.

Here is an example of a short shell session:

% remote_api_shell.py clock
Email: juliet@example.com
Password:
App Engine remote_api shell
Python 2.7.6 (v2.7.6:3a1db0d2747e, Nov 10 2013, 00:42:54)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
The db, users, urlfetch, and memcache modules are imported.
clock> import os.path
clock> import sys
clock> sys.path.append(os.path.realpath('.'))
clock> import models
clock> books = models.Book.query().fetch(6)

Remote Controls | 255

www.it-ebooks.info

http://www.it-ebooks.info/

clock> books
[<models.Book object at 0x7a2c30>, <models.Book object at 0x7a2bf0>,
<models.Book object at 0x7a2cd0>, <models.Book object at 0x7a2cb0>,
<models.Book object at 0x7a2d30>, <models.Book object at 0x7a2c90>]
clock> books[0].title
u'The Grapes of Wrath'
clock> from google.appengine.api import mail
clock> mail.send_mail('juliet@example.com', 'test@example.com',
'Test email', 'This is a test message.')
clock>

To exit the shell, press Ctrl-D.

Using the Remote API from a Script
You can call the remote API directly from your own Python scripts by using a library
from the Python SDK. This configures the Python API to use the remote API handler
for your application for all service calls, so you can use the service APIs as you would
from a request handler directly in your scripts.

Here’s a simple example script that prompts for a developer account email address
and password, then accesses the datastore of a live application:

#!/usr/bin/python

import getpass
import sys

Add the Python SDK to the package path.
Adjust these paths accordingly.
sys.path.append('~/google_appengine')
sys.path.append('~/google_appengine/lib/yaml/lib')

from google.appengine.ext.remote_api import remote_api_stub

import models

Your app ID and remote API URL path go here.
APP_ID = 'app_id'
REMOTE_API_PATH = '/_ah/remote_api'

def auth_func():
 email_address = raw_input('Email address: ')
 password = getpass.getpass('Password: ')
 return email_address, password

def initialize_remote_api(app_id=APP_ID,
 path=REMOTE_API_PATH):
 remote_api_stub.ConfigureRemoteApi(
 app_id,
 path,
 auth_func)

256 | Chapter 10: Datastore Administration

www.it-ebooks.info

http://www.it-ebooks.info/

 remote_api_stub.MaybeInvokeAuthentication()

def main(args):
 initialize_remote_api()

 books = models.Book.query().fetch(10)
 for book in books:
 print book.title

 return 0

if __name__ == '__main__':
 sys.exit(main(sys.argv[1:]))

The ConfigureRemoteApi() function (yes, it has a TitleCase name) sets up the
remote API access. It takes as arguments the application ID, the remote API handler
URL path, and a callable that returns a tuple containing the email address and pass‐
word to use when connecting. In this example, we define a function that prompts for
the email address and password, and pass the function to ConfigureRemoteApi().

The function also accepts an optional fourth argument specifying an alternative
domain name for the connection. By default, it uses app-id.appspot.com, where
app-id is the application ID in the first argument.

The MaybeInvokeAuthentication() function sends an empty request to verify that
the email address and password are correct, and raises an exception if they are not.
(Without this, the script would wait until the first remote call to verify the authentica‐
tion.)

Remember that every call to an App Engine library that performs a service call does
so over the network via an HTTP request to the application. This is inevitably slower
than running within the live application. It also consumes application resources like
web requests do, including bandwidth and request counts, which are not normally
consumed by service calls in the live app.

On the plus side, because your code runs on your local computer, it is not con‐
strained by the App Engine runtime sandbox or the 30-second request deadline. You
can run long jobs and interactive applications on your computer without restriction,
using any Python modules you like—at the expense of consuming app resources to
marshal service calls over HTTP.

Remote Controls | 257

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Using Google Cloud SQL with App Engine

A sizable portion of this book is dedicated to Google Cloud Datastore, a schemaless
persistent object store designed for applications that scale to arbitrary sizes. Those
automatic scaling capabilities come at the expense of features common to relational
databases such as MySQL, PostgreSQL, and Oracle Database. While many common
tasks of web application programming are well suited, or even better suited, for a
scalable datastore, some cases call for a real relational database, with normalized
entries, real-time join queries, and enforced and migratable data schemas. And some‐
times you just want to run third-party software that expects you to have a SQL data‐
base on hand.

For those cases, there’s Google Cloud SQL. A feature of Google Cloud Platform,
Cloud SQL gives you a straight-up no-nonsense MySQL relational database, designed
for ease of use from Cloud Platform runtime environments like App Engine. Your
database lives on a Cloud SQL instance, a virtual machine of a particular size that
runs for as long as you need the database to be available. Your app code connects to
the instance to execute SQL statements and queries using a standard database inter‐
face. You can also configure an IP address for the instance and connect to it with any
MySQL client.

Naturally, Cloud SQL is the opposite of Cloud Datastore when it comes to scaling.
Each SQL instance has a large but limited capacity for concurrent connections, CPU,
and data. If you need more capacity than a single instance can provide, it’s up to you
to start new instances, divide traffic, and shard or replicate data. Cloud SQL includes
special support (currently in a beta release) for read replicas, special instances in a
read-only mode that copy all of the updates from a master instance. You manage
Cloud SQL instances just like you would a fleet of MySQL machines, with all of the
flexibility and overhead that comes with it. Cloud SQL offers many instance types,

259

www.it-ebooks.info

http://www.it-ebooks.info/

and for many applications you can upgrade a single instance quite far before you have
to worry about scaling.

In this chapter, we’ll give a brief overview of how to get started with Cloud SQL, and
how to develop App Engine applications that use it. We won’t cover every feature of
MySQL, as there is plenty of documentation online and many excellent books on the
subject. For information on advanced subjects like read replicas, see the official docu‐
mentation.

Choosing a Cloud SQL Instance
With Cloud SQL, as with all of Google Cloud Platform, you only pay for the resour‐
ces you use. Cloud SQL’s billable resources include instance hours, storage, I/O opera‐
tions to storage, and outbound network bandwidth. Network traffic between App
Engine and Cloud SQL is free. Every instance gets a free externally visible IPv6
address, and inbound network traffic is also free of charge. You can pay a little more
for an IPv4 address for the instance if you have a client on a network that doesn’t
issue global IPv6 addresses.

Like App Engine instances, Cloud SQL instances are available in multiple sizes: D0,
D1, D2, D4, D8, D16, and D32. The instance tiers mainly differ in RAM, ranging from
0.125 gigabytes for a D0 to 16 gigabytes for a D32, and the maximum number of con‐
current connections, from 250 to 4,000.

Storage is billed per gigabyte used per month, and you only pay for the disk space
used by MySQL over time. This includes storage for system tables and logs, as well as
your app’s table schemas and rows. You don’t need to specify (or pay for) a maximum
size. An instance of any tier can grow its data up to 250 gigabytes by default, and you
can raise this limit to 500 gigabytes by purchasing a Google Cloud support package at
the “silver” level.

There are two billing plans for Cloud SQL: per use billing, and package billing. With
per use billing, you are billed for each hour an instance runs, with a minimum of one
hour each time you enable an instance, rounded to the nearest hour. You can start
and stop the instance as needed, and the database persists when the instance is stop‐
ped, with storage billed at the usual storage rate. This is useful for single user sessions
or applications that only need the database during a fixed window of time, where the
instance does not need to run continuously.

If you intend to keep the instance running over a sustained period of multiple days,
such as to keep it available for a web application, you can claim a substantial discount
by selecting package billing. With package billing, you are billed for each day that the
instance exists. You can keep the instance running continuously for no additional
charge. The package price also includes an amount of storage and I/O, and you aren’t
charged for these resources until usage exceeds the bundled amount.

260 | Chapter 11: Using Google Cloud SQL with App Engine

www.it-ebooks.info

https://cloud.google.com/sql/
https://cloud.google.com/sql/
http://www.it-ebooks.info/

As with App Engine instances, the rate differs by instance tier, with D0 being the least
expensive. You can change an instance’s tier at any time. Doing so results in only a
few seconds of downtime.

As usual, prices change frequently enough that we won’t bother to list specific num‐
bers here. See the official documentation for the latest pricing information.

When you first sign up for Cloud SQL, or other Cloud Platform
services such as Compute Engine, you may be eligible for a free
trial of the Platform. The free trial gives you a starting budget of
free resources so you can try out Cloud SQL without charge. This
is a one-time trial budget for you to spend on these services. (This
is different from App Engine’s free quotas, which refresh daily.) Go
to the Cloud Platform website and look for the Free Trial button to
get started.

Installing MySQL Locally
While developing and maintaining an app that uses Cloud SQL, you will use a
MySQL administrative client to connect to the Cloud SQL instance from your local
machine. In addition, you will probably want to run a MySQL server locally to test
your application without connecting to Cloud SQL. You can download and install
MySQL Community Edition from Oracle’s website to get both the client and the
server tools for Windows, Mac OS X, or Linux. MySQL Community Edition is free.

To download MySQL, visit the MySQL Community Downloads page. Be sure to get
the version of MySQL that matches Cloud SQL. Currently, this is version 5.5.

Linux users can install MySQL using apt-get like so:

sudo apt-get install mysql-server mysql-client

Once you have MySQL server installed, the server is running locally and can accept
local connections. If the installation process did not prompt you to set a password for
the root account, set one using the mysqladmin command, where new-password is the
password you wish to set:

mysqladmin -u root password "new-password"

Try connecting to the server using the mysql command:

mysql -u root -p

Enter the password when prompted. When successful, you see a mysql> prompt. You
can enter SQL statements at this prompt to create and modify databases. The root
account has full access, and can also create new accounts and grant privileges.

Installing MySQL Locally | 261

www.it-ebooks.info

https://cloud.google.com/sql/pricing
https://cloud.google.com/
http://dev.mysql.com/downloads/
http://www.it-ebooks.info/

See the MySQL documentation for more information about setting up the local
server.

While you’re at the MySQL website, you might also want to get
MySQL Workbench, a visual client for designing and managing
databases. You can download MySQL Workbench Community Edi‐
tion for free.

Installing the MySQLdb Library
App Engine’s Python runtime environment supports the MySQLdb library, an imple‐
mentation of the Python DB API for MySQL, for connecting to Cloud SQL instances.
You can request this library from the runtime environment using the libraries: sec‐
tion in your app.yaml file:

libraries:
- name: MySQLdb
 version: latest

This library is not distributed with the App Engine SDK, so you must install it locally
for development and testing. This can a bit of a challenge: MySQLdb uses extensions
written in C to interface with the official MySQL libraries, and so building MySQLdb
from its original sources requires that you have a C compiler and appropriate libra‐
ries installed. You can download prebuilt versions of MySQLdb from unofficial repo‐
sitories, as long as you’re careful to get the correct version.

For Windows, visit this website to get an unofficial build of MySQLdb for Python 2.7,
available in 32-bit and 64-bit varieties.

For Linux, you can install the prebuilt package for your distribution. For example, on
Ubuntu and others, this command installs the correct library and its dependencies:

sudo apt-get install python-mysqldb

For Mac OS X, one way to install MySQLdb is with pip. You must have Apple’s Xcode
tools installed so that pip can use the C compiler. Xcode is a free download from the
Mac App Store. The pip command is as follows:

sudo pip install MySQL-python

With the library installed via pip, you must also add the MySQL client library to the
dynamic library load path. Put this in your .bashrc file (if you use bash):

export DYLD_LIBRARY_PATH=/usr/local/mysql/lib:$DYLD_LIBRARY_PATH

As an alternative on Mac OS X, you can use a package manager such as MacPorts.
MacPorts builds the software from sources, and manages dependencies automatically.
You can install MacPorts using the instructions on the MacPorts website.

262 | Chapter 11: Using Google Cloud SQL with App Engine

www.it-ebooks.info

http://dev.mysql.com/doc/refman/5.5/en/
http://www.codegood.com/archives/129
http://www.macports.org/
https://www.macports.org/
http://www.it-ebooks.info/

With MacPorts installed, use the port install command to install the py-mysql
package:

sudo port install py-mysql

Using MacPorts requires that you use the MacPorts version of the Python 2.7 inter‐
preter. You can find this at /opt/local/bin/python2.7. Be sure to use this interpreter
when running dev_appserver.py:

/opt/local/bin/python2.7 ~/google-cloud-sdk/bin/dev_appserver.py myproject

On all platforms, you can verify that MySQLdb is installed by importing it from the
Python prompt:

% python
Python 2.7.9 (default, Dec 13 2014, 15:13:49)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.56)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import MySQLdb
>>>

For more information, see the MySQLdb v1 Github repository and an article about
installation by the author.

Creating a Cloud SQL Instance
Open a browser and visit the Cloud Console. Create a new project, or select an exist‐
ing project, in the usual way. In the sidebar navigation, expand Storage, then select
Cloud SQL. If this is your first Cloud SQL instance, you see a “Create an instance”
button. Click it.

The form for creating a new Cloud SQL instance appears short and simple, asking for
an instance ID, region, and tier. Click “Show advanced options…” to see the full list of
capabilities. A portion of the full screen is shown in Figure 11-1.

The instance ID is a unique name for the Cloud SQL instance. It always begins with
the project ID that “owns” the instance, followed by a colon and the name that you
specify.

The region is the major geographical region where the instance lives. When using
Cloud SQL with App Engine, this must be set to United States. In the future, when
App Engine is available in other regions, the SQL instance and the App Engine app
must be hosted in the same region.

The tier is the tier for this instance. The database version selects a version of MySQL
to use; version 5.5 is fine. Below that, you can select the billing plan for this instance,
either the per use plan or the package plan. Adjusting the tier changes the pricing
information displayed in this section.

Creating a Cloud SQL Instance | 263

www.it-ebooks.info

https://github.com/farcepest/MySQLdb1
http://mysql-python.blogspot.com/2012/11/is-mysqldb-hard-to-install.html
http://mysql-python.blogspot.com/2012/11/is-mysqldb-hard-to-install.html
https://console.developers.google.com/
http://www.it-ebooks.info/

Figure 11-1. The “Create Cloud SQL instance” form with advanced options shown
(excerpt)

The “Preferred location” is more specific than the region. For an App Engine app, you
want to set this to Follow App Engine App to minimize the latency between the app
and the database. Set the App Engine app ID (the project ID) to tell it to follow this
app. You can adjust this if you have more than one distinct app using the same data‐
base instance, and you want the database to follow a specific app that isn’t in this
project.

Cloud SQL can do automatic daily backups of the database. This increases storage
costs, but is likely to be less expensive than backing up to an external repository
(which consumes outgoing bandwidth). If you want backups, make sure “Enable
backups” is checked, and adjust the time range if needed. You can optionally store a
MySQL binary log in addition to backups. The binary log contains every change
event to the database, which is useful for restoring changes that were made since the
last backup.

The “Activation policy” determines how the instance responds to usage. If you set this
to On Demand, it will attempt to limit the instance running time by activating the

264 | Chapter 11: Using Google Cloud SQL with App Engine

www.it-ebooks.info

http://www.it-ebooks.info/

instance for traffic then shutting it down after a few minutes without a connection.
You can pair this with a per use billing plan and allow Cloud SQL to activate the
instance as needed. The “Always On” option activates the instance as soon as you cre‐
ate it, and leaves it running even when idle. You might as well choose this option if
you’ve selected package billing and expect the database to be used at least once a day.
The “Never” option leaves the instance disabled, and only activates it in response to
administrative commands.

If you intend to connect to this database with an external client and that client’s net‐
work does not support IPv6, select “Assign an IPv4 address to my Cloud SQL
instance.” With an IPv4 address assigned, you are charged a small amount of money
every hour the instance is idle.

Advanced options let you adjust the filesystem replication method, authorize specific
IP ranges for clients, and set MySQL server flags for the instance. We’ll adjust the
external authorization settings in the next section.

Set the options as you like them, then click Save. When the instance has been created,
it appears with a status of either “Runnable” or “Running,” depending on how you set
the activation policy.

Connecting to an Instance from Your Computer
Your new instance is ready to accept connections from your App Engine app. In
theory, you could use code deployed to App Engine to connect to the database and
create tables. More likely, you’ll want to do this with an administrative client or
another tool running on your local computer. To connect to an instance using some‐
thing other than App Engine, you must configure the instance to allow incoming
connections from a specific IP address or address range.

Before doing anything else, set a root password for the instance. In the Cloud Con‐
sole, locate and select the Cloud SQL instance. Select the Access Control tab. Under
Set Root Password, enter a password, then click Set. You will use this password when
connecting with the root account.

Next, you need to authorize incoming connections from your computer to the
instance. You can configure the instance to accept connections from specific IP
addresses or network ranges, using either IPv6 addresses or IPv4 addresses. You can
only connect to the instance via its IPv6 address if your network has assigned a public
IPv6 address to your computer. If your computer does not have an IPv6 address, you
must request an IPv4 address for the instance, then authorize your computer’s IPv4
address to connect to it. There is an hourly charge to reserve an IPv4 address, but
only if you leave it idle.

Connecting to an Instance from Your Computer | 265

www.it-ebooks.info

http://www.it-ebooks.info/

The easiest way to determine whether your computer has an IPv6 address is to visit
the What’s My Web IP website using your browser. If this displays an IPv6 address,
such as fba2:2c26:f4e4:8000:abcd:1234:b5ef:7051, then your computer connec‐
ted to the site with an IPv6 address. You can confirm that this is your address using
your computer’s Network settings panel, or by running the ipconfig command on
Windows or the ifconfig command on Mac OS X or Linux.

If this displays an IPv4 address, such as 216.123.55.120, then your computer con‐
nected to the site with an IPv4 address. Even if your network assigned an IPv6
address to your computer, that address is only used locally and won’t be used to make
the final connection to the Cloud SQL instance. You must request an IPv4 address for
the instance in order to connect to it from your computer’s network.

If you need an IPv4 address, click Request an IP Address. An address is assigned to
the instance and displayed.

To authorize your network to connect to the instance, click the Add Authorized Net‐
work button. Copy and paste your computer’s address into the form field, then click
Add.

Finally, use the mysql command to connect to the instance. You can find the instan‐
ce’s IPv6 address on the Overview tab, or use the IPv4 address you requested. Specify
the address as the --host=… parameter:

Using the IPv6 address of the instance:
mysql --host=2001:4860:4864:1:9e4a:e5a2:abcd:ef01 --user=root --password

Or with an IPv4 address:
mysql --host=173.194.225.123 --user=root --password

When using an IPv6 address, you may get a message such as this:

ERROR 2013 (HY000): Lost connection to MySQL server at
'reading initial communication packet', system error: 22

If you do, try authorizing a wider portion of your network’s address space. For exam‐
ple, if your computer’s address is fba2:2c26:f4e4:8000:abcd:1234:b5ef:7051, take
the first four groups, then add ::/64, like this: fba2:2c26:f4e4:8000::/64. Author‐
ize that network, then try the mysql command again with the instance’s IPv6 address.

A successful connection results in a mysql> prompt. You can enter SQL commands at
this prompt. For example, the show databases; command lists the databases cur‐
rently on the instance. MySQL always starts with several databases it uses for mainte‐
nance and configuration:

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+

266 | Chapter 11: Using Google Cloud SQL with App Engine

www.it-ebooks.info

http://whatsmywebip.appspot.com
http://www.it-ebooks.info/

| information_schema |
| mysql |
| performance_schema |
+--------------------+
3 rows in set (0.07 sec)

Type quit to terminate the connection and close the client.

If you requested an IPv4 address and do not intend to connect remotely on a regular
basis, you can remove the IP address to save on costs. Click Remove next to the IP
address in the Access Control tab. Removing the address abandons it, and you may
not get the same address the next time you request one.

If your network assigns IP addresses dynamically or you change networks, you may
need to authorize a new address the next time you connect.

Cloud SQL supports secure connections over SSL. You can set up
SSL certificates from the Access Control tab for the instance. This
is only needed if you want external clients to connect with SSL.
Traffic between App Engine and Cloud SQL is always secure.

Setting Up a Database
Your Cloud SQL instance begins life with MySQL’s initial databases, but no database
for your app to use. The next step is to create a database for the app, then create one
or more accounts with passwords and appropriate privileges to access the new data‐
base.

We’ll continue using the mysql command-line client, but you might also use MySQL
Workbench or some other tool to create the database and users. Remember that you
will need to replicate these steps for your local server as well as the Cloud SQL
instance, and possibly create more than one database with the same tables so you can
use one for testing and another for the live app. Some web application frameworks
have features to automate and replicate databases and tables for this purpose.

Set up a new connection with the mysql command as in the previous section, repeat‐
ing the network authorization step if necessary. Use the root account and password.
At the mysql> prompt, create a new database:

CREATE DATABASE mmorpg;

(As is traditional with SQL, we will capitalize SQL keywords, but you can type these
in lowercase. Names and values are case sensitive. And don’t forget the semicolon.)

You must enter another command to tell the MySQL client to use the new database
for subsequent commands in this session. For subsequent sessions, you can give the

Setting Up a Database | 267

www.it-ebooks.info

http://www.it-ebooks.info/

database name as an argument to the mysql command, or just type this as the first
SQL command in the session:

USE mmorpg;

The root account you are currently using has maximum privileges across the Cloud
SQL instance, including the powers to create and delete entire databases. It’s a good
practice to use a separate account with limited privileges when connecting from your
app. If a coding error in the app accidentally allows an attacker to run arbitrary SQL
commands (a SQL injection attack), you can limit the damage to just the privileges
granted to the app’s account. Most apps need permission to DELETE rows from a table,
but few apps need to be able to DROP databases, GRANT privileges to other accounts, or
SHUTDOWN the server.

Some web application frameworks automate the management of tables, and need an
account with wider privileges to create and delete tables than would normally be used
by the app while handling user requests. If your framework allows it, you can create a
separate account specifically for these management tools, and use a more limited
account within the app itself.

To create a user, enter the CREATE USER command. The following command creates a
user named app with the password p4$$w0rd:

CREATE USER 'app' IDENTIFIED BY 'p4$$w0rd';

You can change the password for this account later (as root) with the SET PASSWORD
command:

SET PASSWORD FOR 'app' = PASSWORD('new-p4$$w0rd');

App Engine does not need a password to connect to a Cloud SQL instance, even
when the account has a password set. You only need the password for connecting to
the Cloud SQL instance from outside of App Engine. Your app code does need a pass‐
word when connecting to your local development database if the local account has a
password.

A new account starts with no privileges. To grant the app account the ability to
SELECT, INSERT, UPDATE, and DELETE rows in all tables in the mmorpg database:

GRANT SELECT, INSERT, UPDATE, DELETE ON mmorpg.* TO 'app';

For accounts that need to create and drop tables, the CREATE, DROP, and ALTER privi‐
leges are also needed. GRANT ALL ON mmorpg.* will give the account complete access
to the database. See the documentation on the GRANT statement for more informa‐
tion about privileges.

We won’t go into detail about how to create tables here. For now, here is a simple
example of creating a table with a few columns in the mmorpg database:

268 | Chapter 11: Using Google Cloud SQL with App Engine

www.it-ebooks.info

http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://www.it-ebooks.info/

CREATE TABLE guild (id VARCHAR(20) PRIMARY KEY, title VARCHAR(50),
 created_date DATETIME, min_level INT);

You can test the app account by disconnecting (type quit) then reconnecting using
the app username and password:

mysql --host=... --user=app -p

Use the mmorpg database, then list the tables:

USE mmorpg;
SHOW TABLES;

The list of tables includes the guild table we created:

mysql> show tables;
+------------------+
| Tables_in_mmorpg |
+------------------+
| guild |
+------------------+
1 row in set (0.07 sec)

Still using the app account, try inserting a row:

INSERT INTO guild VALUES ('superawesomes', 'The Super Awesomes', NOW(), 7);

Select the rows of the table to see the newly added row:

SELECT * FROM guild;

Connecting to the Database from App Engine
It’s time to try connecting to the database from App Engine code. With Python and
MySQLdb, you use the Cloud SQL instance as you would any other database. The
only difference is the initial connection: App Engine provides a named socket based
on the name you provided when you created the instance. You use this name as part
of an argument to the MySQLdb.connect() function.

Unlike the App Engine services and Cloud Datastore, the App Engine development
server does not attempt to emulate the presence of Cloud SQL on your local com‐
puter. You must add code to your app that detects whether it is running in the devel‐
opment server and react accordingly. It’s up to you whether you want the
development server to connect to your local MySQL database, to a Cloud SQL
instance or database reserved for testing, or to the Cloud SQL instance and database
used by the live app. It’s a good idea to use some kind of test database that is separate
from the live database for your regular development, regardless of whether it lives on
a separate Cloud SQL instance or your local machine.

What follows is a simple example that reads and displays the guild table, and
prompts the user to add a row. We’ll use a minimum of features to highlight the

Connecting to the Database from App Engine | 269

www.it-ebooks.info

http://www.it-ebooks.info/

MySQLdb connection code. In a real app, you might use a framework to manage the
SQL statements and form handling.

A file named main.py contains all of the code for connecting to the database, reading
and displaying all rows in the table, and inserting a new row based on submitted form
data:

import jinja2
import logging
import MySQLdb
import os
import re
import webapp2

INSTANCE_NAME = 'saucy-boomerang-123:mydb'
DATABASE = 'mmorpg'
DB_USER = 'app'
DB_PASSWORD = 'p4$$w0rd'

template_env = jinja2.Environment(
 loader=jinja2.FileSystemLoader(os.getcwd()))

def get_db():
 if os.environ.get('SERVER_SOFTWARE', '').startswith('Development'):
 # This is a development server.
 db = MySQLdb.connect(host='127.0.0.1', port=3306,
 db=DATABASE, user=DB_USER, passwd=DB_PASSWORD)
 else:
 # This is on App Engine. A password is not needed.
 db = MySQLdb.connect(unix_socket='/cloudsql/' + INSTANCE_NAME,
 db=DATABASE, user=DB_USER)
 return db

class MainPage(webapp2.RequestHandler):
 def get(self):
 guilds = []

 db = get_db()
 try:
 cursor = db.cursor()
 cursor.execute('SELECT id, title, created_date, '
 'min_level FROM guild;')
 for (id, title, created_date, min_level) in cursor.fetchall():
 guilds.append({
 'id': id,
 'title': title,
 'created_date': created_date,
 'min_level': min_level
 })
 finally:
 db.close()

270 | Chapter 11: Using Google Cloud SQL with App Engine

www.it-ebooks.info

http://www.it-ebooks.info/

 template = template_env.get_template('home.html')
 context = {
 'guilds': guilds,
 }
 self.response.out.write(template.render(context))

 def post(self):
 title = self.request.get('title').strip()
 min_level_str = self.request.get('min_level').strip()

 db = get_db()
 try:
 assert len(title) > 0
 min_level = int(min_level_str)

 key = re.sub(r'\W', '_', title.lower())

 cursor = db.cursor()
 cursor.execute('INSERT INTO guild VALUES (%s, %s, NOW(), %s);',
 (key, title, min_level))
 db.commit()
 except (AssertionError, ValueError), e:
 logging.info('Invalid value from user: title=%r min_level=%r',
 title, min_level_str)
 finally:
 db.close()

 self.redirect('/')

app = webapp2.WSGIApplication([('/', MainPage)], debug=True)

The file home.html contains the Jinja2 template for the list and form:

<!doctype html>
<html>
 <head>
 <title>Guild List</title>
 </head>
 <body>
 {% if guilds %}
 <p>Guilds:</p>

 {% for guild in guilds %}

 {{ guild.title }},
 minimum level: {{ guild.min_level }},
 created {{ guild.created_date }}

 {% endfor %}

 {% else %}
 <p>There are no guilds.</p>
 {% endif %}

Connecting to the Database from App Engine | 271

www.it-ebooks.info

http://www.it-ebooks.info/

 <p>Create a guild:</p>
 <form action="/" method="post">
 <label for="title">Title:</label>
 <input type="text" id="title" name="title" />

 <label for="min_level">Minimum level:</label>
 <input type="text" id="min_level" name="min_level" />

 <input type="submit" name="Create Guild" />
 </form>
 </body>
</html>

The app.yaml for the app routes all requests to the app:

application: myapp
version: 1
runtime: python27
api_version: 1
threadsafe: true

handlers:
- url: .*
 script: main.app

libraries:
- name: MySQLdb
 version: latest
- name: jinja2
 version: "2.6"
- name: markupsafe
 version: "0.15"

In this example, we define the function get_db() to prepare the database connection
based on whether the app is running in a development server or on App Engine. We
test for this using the SERVER_SOFTWARE environment variable, which is set by both
the development server and App Engine:

 if os.environ.get('SERVER_SOFTWARE', '').startswith('Development'):
 # This is a development server.
 # ...
else:
 # This is on App Engine.
 # ...

The MySQLdb.connect() function makes the connection. To connect to the local
MySQL instance from the development server, we simply provide the localhost
address 127.0.0.1, the appropriate port number (3306 by default), the name of the
database, and the user and password we created earlier:

 db = MySQLdb.connect(host='127.0.0.1', port=3306,
 db=DATABASE, user=DB_USER, passwd=DB_PASSWORD)

272 | Chapter 11: Using Google Cloud SQL with App Engine

www.it-ebooks.info

http://www.it-ebooks.info/

When running on App Engine, we connect to the Cloud SQL instance. Instead of a
host and port, we provide the path to a Unix socket that App Engine uses to locate the
instance. The socket path is /cloudsql/ followed by the name of the instance, includ‐
ing the project ID and a colon. For example, if the project ID is saucy-

boomerang-123 and we created an instance named mydb, the complete socket path
is /cloudsql/saucy-boomerang-123:mydb.

Provide this path to the MySQLdb.connect() function as the unix_socket argument.
Do not provide a password in this case: doing so will convince the library to try to
connect to localhost, and you’ll get a permissions error in your application logs.
App Engine does not need a password when connecting to the instance, as it is spe‐
cially authorized to do so. You still need to provide a username, which determines the
database privileges for the app:

 db = MySQLdb.connect(unix_socket='/cloudsql/' + INSTANCE_NAME,
 db=DATABASE, user=DB_USER)

When you are done with the connection, be sure to call db.close() to free it:

 try:
 # ...
 finally:
 db.close()

You prepare a “cursor” object by calling the db.cursor() function, then execute a
SQL statement by passing it to the cursor.execute() method. For statements that
return results, you can fetch the results with a method such as cursor.fetchall():

 cursor = db.cursor()
 cursor.execute('SELECT id, title, created_date, '
 'min_level FROM guild;')
 for (id, title, created_date, min_level) in cursor.fetchall():
 # ...

When using values derived from an external source, such as data submitted by the
user via a form, use parameter substitution: use a formatting placeholder such as %s
in the SQL string for each value, then provide a tuple of values as the second argu‐
ment to cursor.execute():

 cursor.execute('INSERT INTO guild VALUES (%s, %s, NOW(), %s);',
 (key, title, min_level))

Do not use a Python string formatting operator here! The value tuple must be the
second argument to cursor.execute() for parameter substitution to be effective.

Parameter substitution prevents the data from being misconstrued as SQL statement
syntax. This is especially important because it prevents SQL injection attacks from
malicious users. (See “xkcd: Exploits of a Mom,” by Randall Munroe.)

Connecting to the Database from App Engine | 273

www.it-ebooks.info

http://xkcd.com/327/
http://www.it-ebooks.info/

The MySQLdb calling code conforms to the Python DB standard. For more informa‐
tion about this API, see PEP 249: Python Database API Specification v2.0.

Backup and Restore
If you opted for backups when you created the instance, Cloud SQL performs regular
backups of your database automatically. You can enable and disable backups at a later
time from the Cloud Console by editing the instance configuration. You can also
adjust the time of day during which backups occur.

To restore from a recent backup via the Cloud Console, select your Cloud SQL
instance, then scroll down to Backups. Recent backups are listed by timestamp. Find
the backup you want to restore, then click Restore.

Backups are intended for convenient and automatic recovery of the Cloud SQL
instance. If you want to copy data out of Cloud Platform for archival storage or off‐
line processing, you must export the data. (We’ll cover this in the next section.)

Exporting and Importing Data
The Cloud Console provides a convenient way to import and export data from your
database. The format for this data is a text file containing SQL statements, equivalent
to using the mysqldump command.

Exports and imports use Google Cloud Storage for the data file. This can save you the
cost of external bandwidth if you intend to manipulate the data file further using
Google Cloud Platform, such as with a batch job running on App Engine or Compute
Engine.

Each Cloud Storage object has a name (like a filename) and belongs to a bucket (like a
directory). The path to a Cloud Storage object consists of gs://, the bucket name, a
slash, and the object name:

gs://bucket-name/object-name

Bucket names must be unique across all of Cloud Storage, much like usernames.
Cloud Storage reserves bucket names that look like domain names (containing dots)
for the owners of the domains, so if you have verified ownership of your domain
using Google Webmaster Tools, you can use your domain name as your bucket name.
Otherwise, you can register any bucket name that hasn’t already been registered by
someone else.

You must create a Cloud Storage bucket before you can export Cloud SQL data. To
create the bucket, go to the Cloud Console, then navigate to Storage, Cloud Storage,
“Storage browser.” Click “Create bucket” (or “Add bucket”), then enter a name for the
bucket and click the Create button.

274 | Chapter 11: Using Google Cloud SQL with App Engine

www.it-ebooks.info

https://www.python.org/dev/peps/pep-0249/
https://www.google.com/webmasters/tools
http://www.it-ebooks.info/

To export one or more databases from Cloud Console, navigate to the Cloud SQL
instance, then click the Export… button. In the dialog, enter a Cloud Storage path
using the bucket you just created, followed by a filename. A file of that name must
not already exist in the bucket. Optionally, click “Show advanced options…” then
enter the names of the databases to export. By default, all databases are exported.
Click OK. The export takes a few moments to complete.

To access the exported data, return to the Storage browser, then select the bucket. The
bucket contains the exported file you requested, as well as a log file. You can select
these files in the Cloud Console to download them via your browser.

Importing data via the Cloud Console is similar. Go to the Storage browser, select the
bucket, then click the “Upload files” button. Follow the prompts to select the data file
on your local computer and upload it to the bucket. Next, navigate to the Cloud SQL
instance, then click Import…. Enter the Cloud Storage path to the file you uploaded,
then click OK. The import process reads the data file and executes the SQL state‐
ments inside it.

The file generated by an export includes SQL statements to drop tables before re-
creating them. Importing such a file effectively resets the tables to the state they were
in at the time of export. It does not merge old data with new, nor does it result in
duplicate rows.

Because exported data is a file of SQL statements, you can save
space and bandwidth by compressing the file. To export data com‐
pressed using the gzip file format, specify a file path that ends
in .gz. To import a gzip-compressed file, make sure the path ends
in .gz.

The gcloud sql Commands
All of the administrative features for Cloud SQL instances that you see in the Cloud
Console are also available from the command line. The gcloud sql family of com‐
mands can create, delete, restart, and clone instances, as well as import and export
data. These commands are an alternative to the Cloud Console for some interactive
actions, and can also be used in scripts for automation.

Make sure gcloud is configured to use your project, you are signed in, and you have
the sql component installed:

gcloud config set project project-id
gcloud auth login
gcloud components update sql

To list the current Cloud SQL instances for the project:

gcloud sql instances list

The gcloud sql Commands | 275

www.it-ebooks.info

http://www.it-ebooks.info/

To get detailed information about the instance in YAML format:

gcloud sql instances describe instance-name

To get a list of automatic backups for the instance, each identified by a timestamp:

gcloud sql backups list --instance instance-name

To restore a backup from this list:

gcloud sql instances restore-backup --instance instance-name --due-time timestamp

You can initiate exports and imports from the command line as well. As with doing
this from the Cloud Console, exports and imports use Cloud Storage for storing or
reading data. To initiate an export of all databases on the instance to a given Cloud
Storage path:

gcloud sql instances export instance-name gs://bucket-name/object-name

You can narrow the export to specific databases or tables using the --database and
--table flags.

The command to import a file from Cloud Storage is similar:

gcloud sql instances import instance-name gs://bucket-name/object-name

Naturally, you can upload and download files to and from Cloud Storage from the
command line as well. For this, you use the gsutil command. Make sure you have
this command installed:

gcloud components update gsutil

To download a file from Cloud Storage:

gsutil cp gs://bucket-name/object-name .

Just like the cp command, gsutil cp takes a path to the file to copy, and a destination
path. If the destination path is a directory path (like . for the current directory), the
file is copied using its original filename.

To upload a file to Cloud Storage, use the gsutil cp command with a gs:// path as
the second argument:

gsutil cp filename.gz gs://bucket-name/object-name

The Cloud SDK command-line interface has many features for fetching SQL status
and configuration as structured data, as well as for waiting for initiating operations
asynchronously and waiting for operations to complete. You can use the gcloud help
command to browse information on these features. For example, to learn about creat‐
ing Cloud SQL instances from the command line:

gcloud help sql instances create

276 | Chapter 11: Using Google Cloud SQL with App Engine

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

The Memory Cache

Durable data storage requires a storage medium that retains data through power loss
and system restarts. Today’s medium of choice is the hard drive, a storage device
composed of circular platters coated with magnetic material on which data is enco‐
ded. The platters spin at a constant rate while a sensor moves along the radius, read‐
ing and writing bits on the platters as they travel past. Reading or writing a specific
piece of data requires a disk seek to position the sensor at the proper radius and wait
for the platter to rotate until the desired data is underneath. All things considered,
hard drives are astonishingly fast, but for web applications, disk seeks can be costly.
Fetching an entity from the datastore by key can take time on the order of tens of
milliseconds.

Most high-performance web applications mitigate this cost with a memory cache. A
memory cache uses a volatile storage medium, usually the RAM of the cache
machines, for very fast read and write access to values. A distributed memory cache
provides scalable, consistent temporary storage for distributed systems, so many pro‐
cesses on many machines can access the same data. Because memory is volatile—it
gets erased during an outage—the cache is not useful for long-term storage, or even
short-term primary storage for important data. But it’s excellent as a secondary sys‐
tem for fast access to data also kept elsewhere, such as the datastore. It’s also sufficient
as global high-speed memory for some uses.

The App Engine distributed memory cache service, known as memcache in honor of
the original memcached system that it resembles, stores key-value pairs. You can set a
value with a key, and get the value given the key. A value can be up to a megabyte in
size. A key is up to 250 bytes, and the API accepts larger keys and uses a hash algo‐
rithm to convert them to 250 bytes.

The memcache does not support transactions like the datastore does, but it does pro‐
vide several atomic operations. Setting a single value in the cache is atomic: the key

277

www.it-ebooks.info

http://www.it-ebooks.info/

either gets the new value or retains the old one (or remains unset). You can tell
memcache to set a value only if it hasn’t changed since it was last fetched, a technique
known as “compare and set” in the API. The App Engine memcache also includes the
ability to increment and decrement numeric values as an atomic operation.

A common way to use the memcache with the datastore is to cache datastore entities
by their keys. When you want to fetch an entity by key, you first check the memcache
for a value with that key, and use it if found (known as a cache hit). If it’s not in the
memcache (a cache miss), you fetch it from the datastore, then put it in the memcache
so future attempts to access it will find it there. At the expense of a small amount of
overhead during the first fetch, subsequent fetches become much faster.

If the entity changes in the datastore, you can attempt to update the memcache when
the entity is updated in the datastore, so subsequent requests can continue to go to
the cache but see fresh data. This mostly works, but it has two minor problems. For
one, it is possible that the memcache update will fail even if the datastore update suc‐
ceeds, leaving old data in the cache. Also, if two processes update the same datastore
entity, then update the memcache, the datastore will have correct data (thanks to
datastore transactions), but the memcache update will have the value of whichever
update occurs last. Because of this possibility, it’s somewhat better to just delete the
memcache key when the datastore changes, and let the next read attempt populate
the cache with a current value. Naturally, the delete could also fail.

Because there is no way to update both the datastore and the memcache in a single
transaction, there is no way to avoid the possibility that the cache may contain old
data. To minimize the duration that the memcache will have a stale value, you can
give the value an expiration time when you set it. When the expiration time elapses,
the cache unsets the key, and a subsequent read results in a cache miss and triggers a
fresh fetch from the datastore.

Of course, this caching pattern works for more than just datastore entities. You can
use it for datastore queries, web service calls made with URL Fetch, expensive calcu‐
lations, or any other data that can be replaced with a slow operation, where the bene‐
fits of fast access outweigh the possibility of staleness.

This is so often the case with web applications that a best practice is to cache aggres‐
sively. Look through your application for opportunities to make this trade-off, and
implement caching whenever the same value is needed an arbitrary number of times,
especially if that number increases with traffic. Site content such as an article on a
news website often falls into this category. Caching speeds up requests and saves CPU
time.

The APIs for the memcache service are straightforward. Let’s look at each of the
memcache features.

278 | Chapter 12: The Memory Cache

www.it-ebooks.info

http://www.it-ebooks.info/

Calling Memcache from Python
The Python API for the memcache service is provided by the
google.appengine.api.memcache package. The API comes in two flavors: a set of
simple functions (such as set() and get), and a Client class whose methods are
equivalent to the corresponding functions.

This API is intended to be compatible with the Python memcached library, which
existing code or third-party libraries might use. When a feature of this library does
not apply to App Engine, the method or argument for the feature is supported, but
does nothing. We won’t discuss the compatibility aspects here, but see the official
documentation for more information.

The Client class supports one feature that the simple functions do not: compare-
and-set. This mechanism needs to store state between calls, and does so on the
Client instance. This class is not threadsafe, so be sure to create a new Client
instance for each request handler, and don’t store it in a global variable.

Here’s a simple example that fetches a web feed by using the URL Fetch service (via
App Engine’s version of the urllib2 library), stores it in the memcache, and uses the
cached value until it expires five minutes (300 seconds) later. The key is the feed URL,
and the value is the raw data returned by URL Fetch:

import urllib2
from google.appengine.api import memcache

def get_feed(feed_url):
 feed_data = memcache.get(feed_url)
 if not feed_data:
 feed_data = urllib2.urlopen(feed_url).read()
 memcache.set(feed_url, feed_data, time=300)
 return feed_data

Keys and Values
The memcache service stores key-value pairs. To store a value, you provide both a key
and a value. To get a value, you provide its key, and memcache returns the value.

Both the key and the value can be data of any type that can be serialized. The Python
API serializes both the key and the value using the pickle module in the standard
library.

The key can be of any size. App Engine converts the key data to 250 bytes by using a
hash algorithm, which makes for a number of possible unique keys larger than a 1
followed by 600 zeroes. You generally don’t have to think about the size of the key.

Calling Memcache from Python | 279

www.it-ebooks.info

http://www.it-ebooks.info/

The value can be up to 1 megabyte in its serialized form. In practice, this means that
pretty much anything that can fit in a datastore entity can also be a memcache value.

Setting Values
The simplest way to store a value in memcache is to set it. If no value exists for the
given key, setting the value will create a new value in memcache for the key. If there is
already a value for the key, it will be replaced with the new value.

In Python, you call either the set() function, or the equivalent method on a Client
instance. The method returns True on success. It only returns False if there was an
issue reaching the memcache service. Because memcache may evict (delete) values at
any time, it is typical to ignore this return value:

 success = memcache.set(key, value)

 # Or:
 memcache_client = memcache.Client()
 success = memcache_client.set(key, value)

 if not success:
 # There was a problem accessing memcache...

Setting Values That Expire
By default, a memcache value stays in the memcache until it is deleted by the app
with a service call, or until it is evicted by the memcache service. The memcache ser‐
vice will evict a value if it runs out of space, or if a machine holding a value goes
down or is turned down for maintenance.

When you set a value, you can specify an optional expiration time. If provided, the
memcache service will make an effort to evict the value when the expiration time is
reached. The timing may not be exact, but it’ll be close. Setting an expiration time
encourages a cache-backed process to refresh its data periodically, without the app
having to track the age of a cached value and forcibly delete it.

To set an expiration for a value in Python, you include a time argument to set(). Its
value is either a number of seconds in the future relative to the current time up to one
month (2,592,000 seconds), or it is an absolute date and time as a Unix epoch date:

 success = memcache.set(key, value, time=300)

A value’s expiration date is updated every time the value is updated. If you replace a
value with an expiration date, the new value does not inherit the old date. There is no
way to query a key for “time until expiration.”

280 | Chapter 12: The Memory Cache

www.it-ebooks.info

http://www.it-ebooks.info/

Adding and Replacing Values
There are two subtle variations on setting a value: adding and replacing.

When you add a value with a given key, the value is created in memcache only if the
key is not already set. If the key is set, adding the value will do nothing. This opera‐
tion is atomic, so you can use the add operation to avoid a race condition between
two request handlers doing related work.

Similarly, when you replace a value with a given key, the value is updated in memc‐
ache only if the key is set. If the key is not set, the replace operation does nothing, and
the key remains unset. Replacing a value is useful if the absence of the value is mean‐
ingful to another process, such as to inspire a refresh after an expiration date. Note
that, as with replacing values with set, the replaced value will need its own expiration
date if the previous value had one, and there is no way to preserve the previous expi‐
ration after a replacement.

In Python, you invoke these variants using separate functions: add() and replace().
As with set(), these functions have equivalent methods on the Client class. Both of
these methods accept the time argument for setting an expiration date on the added
or replaced value. The return value is True on success—and unlike set(), the add or
replace may fail due to the existence or absence of the key, so this might be useful to
know:

 success = memcache.add(key, value)
 if not success:
 # The key is already set, or there was a problem accessing
 # memcache...

 success = memcache.replace(key, value)
 if not success:
 # The key is not set, or there was a problem accessing memcache...

If the memcache service is unavailable or there is an error accessing the service,
attempts to set, add, or replace values report failure as if the put failed due to the set
policy.

Getting Values
You can get a value out of the memcache by using its key.

In Python, you call the get() function (or method). If the key is not set, it returns
None:

 value = memcache.get(key)
 if value is None:
 # The key was not set...

Getting Values | 281

www.it-ebooks.info

http://www.it-ebooks.info/

If the memcache service is unavailable, the memcache API behaves as if keys do not
exist. Attempts to get values will behave as cache misses.

Deleting Values
An app can force an eviction of a value by deleting its key. The deletion is immediate,
and atomic.

In Python, you pass the key to the delete() function or method. This returns one of
three values: memcache.DELETE_SUCCESSFUL if the key existed and was deleted suc‐
cessfully, memcache.DELETE_ITEM_MISSING if there was no value with the given key, or
memcache.DELETE_NETWORK_FAILURE if the delete could not be completed due to a
service failure. These constants are defined such that if you don’t care about the dis‐
tinction between a successful delete and a missing key, you can use the result as a
conditional expression. (DELETE_NETWORK_FAILURE is 0.)

 success = memcache.delete(key)
 if not success:
 # There was a problem accessing memcache...

Locking a Deleted Key
When you delete a value, you can tell memcache to lock the key for a period of time.
During this time, attempts to add the key will fail as if the key is set, while attempts to
get the value will return nothing. This is sometimes useful to give mechanisms that
rely on an add-only policy some breathing room, so an immediate reading of the key
doesn’t cause confusion.

Only the add operation is affected by a delete lock. The set operation will always suc‐
ceed, and will cancel the delete lock. The replace operation will fail during the lock
period as long as the key is not set; it otherwise ignores the lock.

To lock the key when deleting in Python, you specify the optional seconds argument.
Its value is either a number of seconds in the future up to a month, or an absolute
Unix epoch date-time. The default is 0, which says not to use a lock:

 success = memcache.delete(key, seconds=20)

Atomic Increment and Decrement
Memcache includes special support for incrementing and decrementing numeric val‐
ues as atomic operations. This allows for multiple processes to contribute to a shared
value in the cache without interfering with each other. With just the get and set oper‐
ations we’ve seen so far, this would be difficult: incrementing a value would involve
reading then setting the value with separate operations, and two concurrent processes

282 | Chapter 12: The Memory Cache

www.it-ebooks.info

http://www.it-ebooks.info/

might interleave these operations and produce an incorrect result. The atomic incre‐
ment operation does not have this problem.

When considering using memcache for counting, remember that memcache is non‐
durable storage. Your process must be resilient to the counter value being evicted at
any time. But there are many forms this resilience can take. For instance, the app can
periodically save the counter value to the datastore, and detect and recover if the
increment fails due to the key being unset. In other cases, the counter may be helpful
but not strictly necessary, and the work can proceed without it. In practice, unexpec‐
ted cache evictions are rare, but it’s best to code defensively.

You can use the increment and decrement operations on any unsigned integer value.
Memcache integers are 64 bits in size. Incrementing beyond the maximum 64-bit
integer causes the value to wrap around to 0, and decrementing has the same behav‐
ior in reverse. If the value being incremented is not an integer, nothing changes.

When you call the increment operation, you can specify an optional initial value.
Normally, the increment does nothing if the key is not set. If you specify an initial
value and the key being incremented is not set, the key is set to the initial value, and
the initial value is returned as the result of the operation.

The Python API provides two functions: incr() and decr(). Given a key as its sole
argument, the functions will increment or decrement the corresponding integer value
by 1, respectively. You can specify a different amount of change with the optional
delta argument, which must be a nonnegative integer. In addition, you can specify
an initial_value, which sets the value if the key is unset. Without an initial value,
incrementing or decrementing an unset key has no effect. The function returns the
new value, or None if the increment does not occur:

 # Increment by 1, if key is set. v = v + 1
 result = memcache.incr(key)
 if result is None:
 # The key is not set, or another error occurred...

 # Increment by 9, or initialize to 0 if not set.
 result = memcache.incr(key, delta=9, initial_value=0)

 # Decrement by 3, if key is set. v = v - 3
 result = memcache.decr(key, delta=3)

Compare and Set
While memcache does not support general-purpose transactions across multiple val‐
ues, it does have a feature that provides a modest amount of transactionality for sin‐
gle values. The “compare and set” primitive operation sets a value if and only if it has
not been updated since the last time the caller read the value. If the value was updated
by another process, the caller’s update does not occur, and the operation reports this

Compare and Set | 283

www.it-ebooks.info

http://www.it-ebooks.info/

condition. The caller can retry its calculation for another chance at a consistent
update.

This is a simpler version of the optimistic concurrency control we saw with datastore
transactions, with some important differences. “Compare and set” can only operate
on one memcache value at a time. Because the value is retained in fast nondurable
storage, there is no replication delay. Read and write operations occur simply in the
order they arrive at the service.

The API for this feature consists of two methods: a different get operation that
returns both the value and a unique identifier (the compare-and-set ID, or CAS ID)
for the value that is meaningful to the memcache, and the compare-and-set operation
that sends the previous CAS ID with the updated value. The CAS ID for a key in
memcache changes whenever the key is updated, even if it is updated to the same
value as it had before the update. The memcache service uses the provided CAS ID to
decide whether the compare-and-set operation should succeed.

In Python, the CAS IDs of retrieved values are kept internal to the Client instance
you use to interact with the service. You call a slightly different method for getting
values, gets(), which knows to ask for and remember the CAS ID for the key. To
update with “compare and set,” you call the cas() method on a key previously
retrieved using gets(). Arguments for these methods are similar to get() and set().
There are no function-style equivalents to these Client methods because the meth‐
ods store the CAS IDs for keys in the client instance:

 memcache_client = memcache.Client()

 # Attempt to append a string to a memcache value.
 retries = 3
 while retries > 0:
 retries -= 1
 value = memcache_client.gets(key) or ''
 value += 'MORE DATA!\n'
 if memcache_client.cas(key, value):
 break

The Client instance keeps track of all CAS IDs returned by calls to the gets()
method. You can reset the client’s CAS ID store by calling the cas_reset() method.

Batching Calls to Memcache
The memcache service includes batching versions of its API methods, so you can
combine operations in a single remote procedure call. As with the datastore’s batch
API, this can save time in cases where the app needs to perform the same operation
on multiple independent values. And as with the datastore, batching is not transac‐

284 | Chapter 12: The Memory Cache

www.it-ebooks.info

http://www.it-ebooks.info/

tional: some operations may succeed while others fail. The total size of the batch call
parameters can be up to 32 megabytes, as can the total size of the return values.

The Python API includes separate batch functions for each operation, both as stand‐
alone functions and as Client methods. The names of the batch methods all end with
_multi.

set_multi() sets multiple values. It takes a mapping of keys and values as its first
argument, and an optional expiration time argument that applies to all values set.
The method returns a list of keys not set. An empty list indicates that all values were
set successfully:

 value_dict = {}
 for result in results:
 value_dict[key_for_result(result)] = result

 keys_not_set = memcache.set_multi(value_dict)
 if keys_not_set:
 # Keys in keys_not_set were not set...

add_multi() and replace_multi() behave similarly. They take a mapping argument
and the optional time argument, and return a list of keys not set. As with add() and
replace(), these methods may fail to set keys because they are already set, or are not
set, respectively.

get_multi() takes a list of keys, and returns a mapping of keys to values for all keys
that are set in memcache. If a provided key is not set, it is omitted from the result
mapping:

 value_dict = memcache.get_multi(keys)
 for key in keys:
 if key not in value_dict:
 # key is unset...
 else:
 value = value_dict[key]
 # ...

delete_multi() takes a list of keys, and an optional seconds argument to lock all the
keys from adds for a period of time. The method returns True if all keys were deleted
successfully or are already unset, or False if any of the keys could not be deleted.
Unlike delete(), delete_multi() does not distinguish between a successful delete
and an unset key:

 success = memcache.delete_multi(keys)

Batch increments and decrements are handled by a single method, offset_multi().
This method takes a mapping of keys to delta values, where positive delta values are
increments and negative delta values are decrements. You can also provide a single
initial_value argument, which applies to all keys in the mapping. The return value

Batching Calls to Memcache | 285

www.it-ebooks.info

http://www.it-ebooks.info/

is a mapping of keys to updated values. If a key could not be incremented, its value in
the result mapping is None:

 increments = {}
 for key in keys:
 increments[key] = increment_for_key(key)

 value_dict = memcache.offset_multi(increments, initial_value=0)

To get multiple values for later use with “compare and set,” you call the get_multi()
method with an additional argument: for_cas=True. This returns a mapping of
results just as it would without this argument, but it also stores the CAS IDs in the
Client:

 memcache_client = memcache.Client()

 value_dict = memcache_client.get_multi(keys, for_cas=True)

To batch “compare and set” multiple values, you call the cas_multi() method with a
mapping of keys and their new values. As with the other methods that update values,
this method returns a list of keys not set successfully, with an empty list indicating
success for all keys. If a key was not updated because it was updated since it was last
retrieved, the key appears in the result list:

 keys_not_set = memcache_client.cas_multi(value_dict)

Each Python batch function takes an optional key_prefix argument, a bytestring
value. If provided, this prefix is prepended to every key sent to the service, and
removed from every key returned by the service. This is useful as an inexpensive way
to partition values. Note that key prefixes are distinct from namespaces:

 prefix = 'alphabeta:'

 value_dict = {'key1': 'value1',
 'key2': 'value2',
 'key3': 'value3'}
 # Set 'alphabeta:key1', 'alphabeta:key2', 'alphabeta:key3'.
 memcache.set_multi(value_dict, key_prefix=prefix)

 keys = ['key1', 'key2', 'key3']
 value_dict = memcache.get_multi(keys, key_prefix=prefix)
 # value_dict['key1'] == 'value1'
 # ('alphabeta:' does not appear in the value_dict keys.)

286 | Chapter 12: The Memory Cache

www.it-ebooks.info

http://www.it-ebooks.info/

Memcache Administration
With the memcache service playing such an important role in the health and well-
being of your application, it’s important to understand how your app is using it under
real-world conditions. App Engine provides a Memcache viewer in the Cloud Con‐
sole (Compute, App Engine, Memcache), which shows you up-to-date statistics about
your app’s memcache data, and lets you browse, query, edit, and create values. You
can also delete the entire contents of the cache from this panel, a drastic but some‐
times necessary act.

The viewer displays the number of hits (successful attempts to get a value), the num‐
ber of misses (attempts to get a value using a key that was unset), and the ratio of
these numbers. The raw numbers are roughly over the lifetime of the app, but it’s the
ratio that’s the more useful number: the higher the hit ratio, the more time is being
saved by using a cached value instead of performing a slower query or calculation.

Also shown is the total number of items and the total size of all items. These numbers
mostly serve as vague insight into the overall content of the cache. They don’t apply to
any fixed limits or billable quotas, and there’s no need to worry if these numbers are
large. Understanding the average item size might be useful if you’re troubleshooting
why small items used less frequently than very large items are getting evicted.

A particularly interesting statistic is the “oldest item age.” This is a bit of a misnomer:
it’s actually the amount of time since the last access of the least recently accessed item,
not the full age of that item. Under moderate load, this value approximates the
amount of time a value can go without being accessed before it is evicted from the
cache to make room for hotter items. You can think of it as a lower bound on the
usefulness of the cache. Note that more popular cache items live longer than less pop‐
ular ones, so this age refers to the least popular item in the cache.

You can use the Memcache panel to query, create, and modify a value in the memc‐
ache, if you have the key. The API lets you use any serializable data type for keys, and
the Memcache panel can’t support all possible types, so this feature is only good for
some key types. String keys are supported for Python. Similarly, updating values from
the panel is limited to several data types, including bytestrings, Unicode text strings,
Booleans, and integers.

Lastly, the Memcache panel has a big scary button to flush the cache, evicting (delet‐
ing) all of its values. Hopefully you’ve engineered your app to not depend on a value
being available in the cache, and clicking this button would only inconvenience the
app while it reloads values from primary storage or other computation. But for an
app of significant size under moderate traffic with a heavy reliance on the cache,
flushing the cache can be disruptive. You may need this button to clear out data

Memcache Administration | 287

www.it-ebooks.info

http://www.it-ebooks.info/

inconsistencies caused by a bug after deploying a fix (for example), but you may want
to schedule the flush during a period of low traffic.

The Python development server includes a version of the Memcache viewer in the
development server console, so you can inspect statistics, query specific (string) keys,
and flush the contents of the simulated memcache service. With your development
server running, visit the development server console, then select Memcache Viewer
from the sidebar.

Cache Statistics
The memcache statistics shown in the Cloud Console are also available to your app
through a simple API.

In Python, you fetch memcache statistics with the get_stats() method. This method
returns a dictionary containing the statistics:

import logging

stats = memcache.get_stats()

logging.info('Memcache statistics:')
for stat in stats.iteritems():
 logging.info('%s = %d' % stat)

Available statistics include the following:

hits

The number of cache hits counted

misses

The number of cache misses counted

items

The number of items currently in the cache

bytes

The total size of items currently in the cache

byte_hits

The total number of bytes returned in response to cache hits, including keys and
values

oldest_item_age

The amount of time since the last access of the least recently accessed item in the
cache, in milliseconds

288 | Chapter 12: The Memory Cache

www.it-ebooks.info

http://www.it-ebooks.info/

Flushing the Memcache
You can delete every item in the memcache for your app, using a single API call. Just
like the button in the Cloud Console, this action is all or nothing: there is no way to
flush a subset of keys, beyond deleting known keys individually or in a batch call.

If your app makes heavy use of memcache to front-load datastore entities, keep in
mind that flushing the cache may cause a spike in datastore traffic and slower request
handlers as your app reloads the cache.

To flush the cache in Python, you call the flush_all() function. It returns True on
success:

 memcache.flush_all()

Memcache Administration | 289

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Fetching URLs and Web Resources

An App Engine application can connect to other sites on the Internet to retrieve data
and communicate with web services. It does this not by opening a connection to the
remote host from the application server, but through a scalable service called the URL
Fetch service. This takes the burden of maintaining connections away from the app
servers, and ensures that resource fetching performs well regardless of how many
request handlers are fetching resources simultaneously. As with other parts of the
App Engine infrastructure, the URL Fetch service is used by other Google applica‐
tions to fetch web pages.

The URL Fetch service supports fetching URLs using the HTTP protocol as well as
using HTTP with SSL (HTTPS). Other methods sometimes associated with URLs
(such as FTP) are not supported.

Because the URL Fetch service is based on Google infrastructure, the service inherits
a few restrictions that were put in place in the original design of the underlying
HTTP proxy. The service supports the five most common HTTP actions (GET,
POST, PUT, HEAD, and DELETE) but does not allow for others or for using a non‐
standard action. Also, it can only connect to TCP ports in several allowed ranges: 80–
90, 440–450, and 1024–65535. By default, it uses port 80 for HTTP, and port 443 for
HTTPS. The proxy uses HTTP 1.1 to connect to the remote host.

The outgoing request can contain URL parameters, a request body, and HTTP head‐
ers. A few headers cannot be modified for security reasons, which mostly means that
an app cannot issue a malformed request, such as a request whose Content-Length
header does not accurately reflect the actual content length of the request body. In
these cases, the service uses the correct values, or does not include the header.

Request and response sizes are limited, but generous. A request can be up to 5 mega‐
bytes in size (including headers), and a response can be up to 32 megabytes in size.

291

www.it-ebooks.info

http://www.it-ebooks.info/

The service waits for a response up to a time limit, or “deadline.” The default fetch
deadline is 5 seconds, but you can increase this on a per-request basis. The maximum
deadline is 60 seconds during a user request, or 10 minutes during a task queue or
scheduled task or from a backend. That is, the fetch deadline can be up to the request
handler’s own deadline, except for backends (which have none).

The Python runtime environment offers implementations of standard libraries used
for fetching URLs that call the URL Fetch service behind the scenes. These are the
urllib, httplib, and urllib2 modules. These implementations give you a reason‐
able degree of portability and interoperability with other libraries.

Naturally, the standard interfaces do not give you complete access to the service’s fea‐
tures. When using the standard libraries, the service uses the following default behav‐
iors:

• If the remote host doesn’t respond within 5 seconds, the request is canceled and a
service exception is raised.

• The service follows HTTP redirects up to five times before returning the
response to the application.

• Responses from remote hosts that exceed 32 megabytes in size are truncated to
32 megabytes. The application is not told whether the response is truncated.

• HTTP over SSL (HTTPS) URLs will use SSL to make the connection, but the ser‐
vice will not validate the server’s security certificate. (The App Engine team has
said certificate validation will become the default for the standard libraries in a
future release, so check the App Engine website.)

All of these behaviors can be customized when calling the service APIs directly. You
can increase the fetch response deadline, disable the automatic following of redirects,
cause an exception to be thrown for responses that exceed the maximum size, and
enable validation of certificates for HTTPS connections.

The development server simulates the URL Fetch service by making HTTP connec‐
tions directly from your computer. If the remote host might behave differently when
your app connects from your computer rather than from Google’s proxy servers, be
sure to test your URL Fetch calls on App Engine.

In this chapter, we introduce the standard-library and direct interfaces to the URL
Fetch service. We also examine several features of the service, and how to use them
from the direct APIs.

292 | Chapter 13: Fetching URLs and Web Resources

www.it-ebooks.info

http://www.it-ebooks.info/

Fetching resources from remote hosts can take quite a bit of time.
Like several other services, the URL Fetch service offers a way to
call the service asynchronously, so your application can issue fetch
requests and do other things while remote servers take their time
to respond. See Chapter 17 for more information.

Fetching URLs
You call the URL Fetch service by using the google.appengine.api.urlfetch mod‐
ule, or you can use Python standard libraries such as urllib2.

The Python runtime environment overrides portions of the urllib, urllib2, and
httplib modules in the Python standard library so that HTTP and HTTPS connec‐
tions made with these modules use the URL Fetch service. This allows existing soft‐
ware that depends on these libraries to function on App Engine, as long as the
requests function within certain limitations. urllib2 has rich extensible support for
features of remote web servers such as HTTP authentication and cookies. We won’t
go into the details of this module here, but Example 13-1 shows a brief example using
the module’s urlopen() convenience function.

Example 13-1. A simple example of using the urllib2 module to access the URL Fetch
service

import urllib2
from google.appengine.api import urlfetch

...
 try:
 newsfeed = urllib2.urlopen('http://ae-book.appspot.com/blog/atom.xml/')
 newsfeed_xml = newsfeed.read()
 except urllib2.URLError, e:
 # Handle urllib2 error...

 except urlfetch.Error, e:
 # Handle urlfetch error...

In this example, we catch both exceptions raised by urllib2 and exceptions raised
from the URL Fetch Python API, google.appengine.api.urlfetch. The service may
throw one of its own exceptions for conditions that urllib2 doesn’t catch, such as a
request exceeding its deadline.

Because the service follows redirect responses by default (up to five times) when
using urllib2, a urllib2 redirect handler will not see all redirects, only the final
response.

Fetching URLs | 293

www.it-ebooks.info

http://www.it-ebooks.info/

If you use the service API directly, you can customize these behaviors. Example 13-2
shows a similar example using the urlfetch module, with several options changed.

Example 13-2. Customizing URL Fetch behaviors, using the urlfetch module

from google.appengine.api import urlfetch

...
 try:
 newsfeed = urlfetch.fetch('http://ae-book.appspot.com/blog/atom.xml/',
 allow_truncated=False,
 follow_redirects=False,
 deadline=10)
 newsfeed_xml = newsfeed.content
 except urlfetch.Error, e:
 # Handle urlfetch error...

We’ll consider the direct URL Fetch API for the rest of this chapter.

Outgoing HTTP Requests
An HTTP request can consist of a URL, an HTTP method, request headers, and a
payload. Only the URL and HTTP method are required, and the API assumes you
mean the HTTP GET method if you only provide a URL.

You fetch a URL using HTTP GET by passing the URL to the fetch() function in the
google.appengine.api.urlfetch module:

from google.appengine.api import urlfetch

...
 response = urlfetch.fetch('http://www.example.com/feed.xml')

The URL
The URL consists of a scheme, a domain, an optional port, and a path. For example:

https://www.example.com:8081/private/feed.xml

In this example, https is the scheme, www.example.com is the domain, 8081 is the
port, and /private/feed.xml is the path.

The URL Fetch service supports the http and https schemes. Other schemes, such as
ftp, are not supported.

If no port is specified, the service will use the default port for the scheme: port 80 for
HTTP, and port 443 for HTTPS. If you specify a port, it must be within 80–90, 440–
450, or 1024–65535.

294 | Chapter 13: Fetching URLs and Web Resources

www.it-ebooks.info

http://www.it-ebooks.info/

As a safety measure against accidental request loops in an application, the URL Fetch
service will refuse to fetch the URL that maps to the request handler doing the fetch‐
ing. An app can make connections to other URLs of its own, so request loops are still
possible, but this restriction provides a simple sanity check.

As just shown, the API takes the URL as a string passed to the fetch() function as its
first positional argument.

The HTTP Method and Payload
The HTTP method describes the general nature of the request, as codified by the
HTTP standard. For example, the GET method asks for the data associated with the
resource identified by the URL (such as a document or database record). The server is
expected to verify that the request is allowed, then return the data in the response,
without making changes to the resource. The POST method asks the server to modify
records or perform an action, and the client usually includes a payload of data with
the request.

The URL Fetch service can send requests using the GET, POST, PUT, HEAD, and
DELETE methods. No other methods are supported.

You set the method by providing the method keyword argument to the fetch() func‐
tion. The possible values are provided as constants by the urlfetch method. If the
argument is omitted, it defaults to urlfetch.GET. To provide a payload, you set the
payload keyword argument:

 profile_data = profile.get_field_data()
 response = urlfetch.fetch('http://www.example.com/profile/126542',
 method=urlfetch.POST,
 payload=new_profile_data)

Request Headers
Requests can include headers, a set of key-value pairs distinct from the payload that
describe the client, the request, and the expected response. App Engine sets several
headers automatically, such as Content-Length. Your app can provide additional
headers that may be expected by the server.

The fetch() function accepts additional headers as the headers keyword argument.
Its value is a mapping of header names to values:

 response = urlfetch.fetch('http://www.example.com/article/roof_on_fire',
 headers={'Accept-Charset': 'utf-8'},
 payload=new_profile_data)

Some headers cannot be set directly by the application. This is primarily to discour‐
age request forgery or invalid requests that could be used as an attack on some
servers. Disallowed headers include Content-Length (which is set by App Engine

Outgoing HTTP Requests | 295

www.it-ebooks.info

http://www.it-ebooks.info/

automatically to the actual size of the request), Host, Vary, Via, X-Forwarded-For,
and X-ProxyUser-IP.

The User-Agent header, which most servers use to identify the software of the client,
can be set by the app. However, App Engine will append a string to this value identi‐
fying the request as coming from App Engine. This string includes your application
ID. This is usually enough to allow an app to coax a server into serving content
intended for a specific type of client (such as a specific brand or version of web
browser), but it won’t be a complete impersonation of such a client.

HTTP over SSL (HTTPS)
When the scheme of a URL is https, the URL Fetch service uses HTTP over SSL to
connect to the remote server, encrypting both the request and the response.

The SSL protocol also allows the client to verify the identity of the remote host, to
ensure it is talking directly to the host and traffic is not being intercepted by a mali‐
cious host (a “man in the middle” attack). This protocol involves security certificates
and a process for clients to validate certificates.

By default, the URL Fetch service does not validate SSL certificates. With validation
disabled, traffic is still encrypted, but the remote host’s certificates are not validated
before sending the request data. You can tell the URL Fetch service to enable valida‐
tion of security certificates.

To enable certificate validation in Python, you provide the
validate_certificate=True argument to fetch():

 response = urlfetch.fetch('https://secure.example.com/profile/126542',
 validate_certificate=True)

The standard libraries use the default behavior and do not validate certificates. If you
need to validate certificates, you must use the urlfetch API.

Request and Response Sizes
The request can be up to 5 megabytes in size, including the headers and payload. The
response can be up to 32 megabytes in size.

The URL Fetch service can do one of two things if the remote host returns a response
larger than 32 megabytes: it can truncate the response (delete everything after the
first 32 megabytes), or it can raise an exception in your app. You control this behavior
with an option.

296 | Chapter 13: Fetching URLs and Web Resources

www.it-ebooks.info

http://www.it-ebooks.info/

The fetch() function accepts an allow_truncated=True keyword argument. The
default is False, which tells the service to raise a urlfetch.ResponseTooLargeError
if the response is too large:

 response = urlfetch.fetch('http://www.example.com/firehose.dat',
 allow_truncated=True)

The standard libraries tell the URL Fetch service to allow truncation. This ensures
that the standard libraries won’t raise an unfamiliar exception when third-party code
fetches a URL, at the expense of returning unexpectedly truncated data when respon‐
ses are too large.

Request Deadlines
The URL Fetch service issues a request, waits for the remote host to respond, and
then makes the response available to the app. But the service won’t wait on the remote
host forever. By default, the service will wait 5 seconds before terminating the con‐
nection and raising an exception with your app.

You can adjust the amount of time the service will wait (the “deadline”) as an option
to the fetch call. You can set a deadline up to 60 seconds for fetches made during user
requests, and up to 10 minutes (600 seconds) for requests made during tasks. That is,
you can wait up to the maximum amount of time your request handler can run. Typi‐
cally, you’ll want to set a fetch deadline shorter than your request handler’s deadline,
so it can react to a failed fetch.

To set the fetch deadline, provide the deadline keyword argument, whose value is a
number of seconds. If a fetch exceeds its deadline, the service raises a urlfetch.Dead
lineExceededError:

 response = urlfetch.fetch('http://www.example.com/users/ackermann',
 deadline=30)

Handling Redirects
You can tell the service to follow redirects automatically, if HTTP redirect requests
are returned by the remote server. The server will follow up to five redirects, then
return the last response to the app (regardless of whether the last response is a redi‐
rect or not).

urlfetch.fetch() accepts a follow_redirects=True keyword argument. The
default is False, which means to return the first response even if it’s a redirect. When
using the urllib2, redirects are followed automatically, up to five times:

 response = urlfetch.fetch('http://www.example.com/bounce',
 follow_redirects=True)

Request Deadlines | 297

www.it-ebooks.info

http://www.it-ebooks.info/

When following redirects, the service does not retain or use cookies set in the respon‐
ses of the intermediate steps. If you need requests to honor cookies during a redirect
chain, you must disable the automatic redirect feature, and process redirects man‐
ually in your application code.

Response Objects
The fetch() function returns an object with response data available on several
named properties. (The class name for response objects is _URLFetchResult, which
implies that only the fetch() function should be constructing these objects—or rely‐
ing on the class name.)

The response fields are as follows:

content

The response body. A Python str.

status_code

The HTTP status code. An int.

headers

The response headers, as a mapping of names to values.

final_url

The URL that corresponds to the response data. If automatic redirects were
enabled and the server issued one or more redirects, this is the URL of the final
destination, which may differ from the request URL. A Python str.

content_was_truncated

True if truncation was enabled and the response data was larger than 32 mega‐
bytes.

298 | Chapter 13: Fetching URLs and Web Resources

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

Sending and Receiving Email Messages

While today’s Internet offers many modes of communication, one of the oldest
modes is still one of the most popular: email. For web applications, email is the pri‐
mary mechanism for representing and validating identity, and managing access to
application-specific accounts. Email is how your app reaches out to your users when
they are not on your website and signed in.

An App Engine app can send email messages by calling the Mail service API. An app
might send email to notify users of system events or the actions of other users (such
as to send social networking invitations), confirm user actions (such as to confirm an
order), follow up on long-term user actions (such as to send a shipping notice for an
order), or send system notifications to administrators. The app can send email on
behalf of itself or the app’s administrators. The app can also send email on behalf of
the currently signed-in user, during the request handler.

Sending email messages is similar to initiating HTTP requests: the app calls a service
by using an API, and the service takes care of making remote connections and man‐
aging the appropriate protocols. Unlike the URL Fetch service, the Mail service does
not return a response immediately. Instead, messages are enqueued for delivery, and
errors are reported via “bounce” email messages to the sender address.

An app can also receive email messages sent to specific addresses. This might allow
an app to provide an email interface to the application, or to moderate or monitor
email discussions. The app can reply to the email immediately, or set up work that
causes a reply to be sent later.

Receiving email messages is also similar to receiving HTTP requests. In fact, this uses
the same mechanism: request handlers. When a service receives an email message
intended for your app, the Mail service sends an HTTP request to the app using a
specified URL with the message in the HTTP payload. The app processes incoming

299

www.it-ebooks.info

http://www.it-ebooks.info/

messages, using request handlers mapped to the specified URLs. The service ignores
the response for the request; if the app needs to reply to the user, it can send a mes‐
sage using the API.

Figure 14-1 illustrates the flow of incoming email messages.

Figure 14-1. Architecture of incoming email messages, calling web hooks in response to
incoming message events

Each app has its own set of incoming email addresses, based on its application ID. For
email, the app can receive messages at addresses of these forms:

 app-id@appspotmail.com

 anything@app-id.appspotmail.com

App Engine does not support receiving email at an address on an app’s custom
domain name. However, you can use an email address on your custom domain as a
“From” address by setting it up as a Google account, and then making that account a
“developer” of the app in the Cloud Console. You can further configure automatic
forwarding of replies to that address by using Gmail.

In this chapter, we discuss the APIs for sending and receiving email messages, and
language-specific tools for creating and processing those messages.

300 | Chapter 14: Sending and Receiving Email Messages

www.it-ebooks.info

http://www.it-ebooks.info/

Sending Email Messages
To send an email message, you call the API of the Mail service. The outgoing message
has a sender address (“From”), one or more recipients (“To,” “Cc,” or “Bcc”), a subject,
a message body, and optional file attachments.

An email message can contain a limited set of message headers, which are understood
by mail servers and clients. The headers an app can set are restricted to prevent the
service from being abused to send forged messages. (See the official documentation
for the current list of allowed headers.) The Mail service attaches additional headers
to the message, such as the date and time the message is sent.

You can specify a multipart message body, such as to include both plain text and
HTML versions of the message, and to include attachments. The total size of the mes‐
sage, including all headers and attachments, cannot exceed 10 megabytes.

The call to the Mail service is asynchronous. When your application calls the Mail
service to send a message, the message is enqueued for delivery, and the service call
returns. If there is a problem delivering the message, such as if the remote mail server
cannot be contacted or the remote server says the address is invalid, an error message
is sent via email to the sender address. The app is not notified of the failure by the
service directly. If the app must be notified of a message send failure, you can use an
incoming email address for the app as the sender address. The app will have to parse
the message sent by the remote server for an error.

When running on App Engine, outgoing email counts toward your outgoing band‐
width quota, as well as the quota for the total number of email recipients. You can
increase these quotas by adjusting your billing settings. Email messages sent to the
application administrators use a separate limit (Admins Emailed in the Quotas dis‐
play of the Cloud Console) to allow for apps that send maintenance reports and alerts
to administrators but do not need to send email to arbitrary recipients.

App Engine gives special treatment to the limit on email recipients
to prevent abuse of the system, such as sending junk or scam email
(which is against the terms of service and an all-around lousy thing
to do). New apps are only allowed a small number of email recipi‐
ents per month under the free plan. When you activate billing for
an app for the first time, this limit is not raised until the first charge
to your billing account succeeds. This is intended to discourage
abusers from activating billing with invalid payment details just to
temporarily raise the recipient limit.
If your app relies on sending email to many users (such as for reg‐
istration confirmation), be sure to activate billing and test your
email features two weeks in advance of launching your website.

Sending Email Messages | 301

www.it-ebooks.info

http://www.it-ebooks.info/

Sending Email from the Development Server
When your app runs in the development server, sending a message causes the server
to print information about the message to the logs, and no message is sent. In the
development server, you can configure the server to actually send email messages by
using either Sendmail (if it’s set up on your machine) or an SMTP server.

To configure the Python development server to use Sendmail to send email, give the
server the --enable_sendmail flag:

dev_appserver.py --enable_sendmail appdir

To configure the Python development server to use an SMTP server to send email,
use the --smtp_host=… (with optional --smtp_port=…), --smtp_user=…, and
--smtp_password=… arguments:

dev_appserver.py \
 --smtp_host=smtp.example.com \
 --smtp_user=exmail \
 --smtp_password="t3!!t43w0r!d" \
 appdir

Sender Addresses
The sender (“From”) address on an outgoing email message must be one of the
allowed addresses:

• The Google Account address of one of the application administrators
• The address of the user currently signed in to the app with Google Accounts

(during the request handler that is sending the message)
• A valid incoming email address for the application

Replies to messages sent by the app go to the sender address, as do error messages
sent by the outgoing mail server (such as “Could not connect to remote host”) or the
remote mail server (such as “User not found”).

You can use an application developer’s Google account address as the sender address.
To add accounts as application administrators, go to the Developers section of the
Cloud Console. If you do not want to use the account of a specific developer as the
sender address, you can create a new Google account for a general-purpose address,
then add it as a developer for the app: in the Console, select Permissions, then invite
the user account. Be sure to select the Viewer role, so if someone gets the account’s
password, that person cannot make changes to the app. You can use Gmail to moni‐
tor the account for replies, and you can set up automatic email forwarding in Gmail
to relay replies to specific administrators or a mailing list (or Google Group) auto‐
matically.

302 | Chapter 14: Sending and Receiving Email Messages

www.it-ebooks.info

http://www.it-ebooks.info/

A Google account can use a Gmail address or a Google Apps
domain address. If your app has a custom domain, you can create a
new Google account with an address on the domain (such as
support@example.com), give the account Viewer permissions for
the app, and use the address for outgoing mail.
If you don’t have a Google Apps domain, you can create a Gmail
account using the application ID, and add app-id@gmail.com as a
developer. Note that if you create the Gmail account before you
register the application ID, you must be signed in using the Gmail
account when you register the application ID. App Engine won’t let
you register an app ID that matches a Gmail account name unless
you are signed in with that account.

You can use the email address of a user as the sender address if and only if the address
is of a registered Google Account, the user is signed in, and the user initiated the
request whose handler is sending the email. That is, you can send email on behalf of
the “current” user. This is useful if the email is triggered by the user’s action and if
replies to the message ought to go to the user’s email address. The Google Accounts
API does not expose the user’s human-readable name, so you won’t be able to provide
that unless you get it from the user yourself.

As we mentioned earlier, an application can receive email messages at addresses of
the form app-id@appspotmail.com or anything@app-id.appspotmail.com, where
app-id is your application ID and anything can be any string that’s valid on the left
side of the email address (it can’t contain an @ symbol). You can use an incoming
email address as the sender of an email message to have replies routed to a request
handler.

The “anything” lets you create custom sender addresses on the fly. For example, a cus‐
tomer support app could start an email conversation with a unique ID and include
the ID in the email address (support+ID@app-id.appspotmail.com), and save replies
for that conversation in the datastore so the entire thread can be viewed by customer
service personnel.

Note that the sender address will also receive error (“bounce”) messages. If you use an
incoming mail address as the sender, you could have the app process error messages
to remove invalid email addresses automatically. Note that different remote email
servers may use different formatting for error messages.

Any email address can also have a human-friendly name, such as "The Example Team
<admin@example.com>". How you do this is specific to the interface; we’ll look at the
interfaces in a moment.

You can include a separate “Reply-to” address in addition to the sender (“From”)
address. Most mail readers and servers will use this address instead of the sender

Sending Email Messages | 303

www.it-ebooks.info

mailto:ID@app-id.appspotmail
mailto:admin@example.com
http://www.it-ebooks.info/

address for replies and error messages. The “Reply-to” address must meet the same
requirements as the sender address.

The development server does not check that the sender address meets these condi‐
tions because it doesn’t know who the app’s developers are. Be sure to test features
that send email while running on App Engine.

Recipients
An outgoing email message can use any address for a recipient, and can have multiple
recipients.

A recipient can be a primary recipient (the “To” field), a secondary or “carbon-
copied” recipient (the “Cc” field), or a “blind carbon-copied” recipient (“Bcc”). The
“To” and “Cc” recipients are included in the content of the message, so a reply
intended for all recipients can be sent to the visible addresses. The “Bcc” recipients
receive the message, but their addresses are not included in the content of the mes‐
sage, and so are not included in replies.

The “Bcc” recipient type is especially useful if you want a single message to go to mul‐
tiple recipients, but you do not want any recipient to know who received the message.
You can use this technique to send an email newsletter to users without exposing the
users’ email addresses. A common technique for newsletters is to use the sender
address as the sole “To” recipient, and make everyone else a “Bcc” recipient.

The number of recipients for an email message counts toward an email recipient
quota. This quota is initially small to prevent unsolicited email advertisers from abus‐
ing the system. You can raise this quota by allocating part of your budget toward
email recipients.

When you enable billing in your app for the first time, the email
recipients quota will not increase from the free level until your first
payment is processed. This is one of several measures to prevent
spammers from abusing the service.

Attachments
An app can attach files to an email message. One good use of attachments is to
include images for rich HTML email messages.

For security reasons (mostly having to do with insecure email clients), some file types
are not allowed as email attachments. A file’s type is determined by its filename exten‐
sion. For example, files that represent executable programs (such as .exe, .bat, or .sh)
are not allowed. Some file archive types like .zip are allowed, but the archive cannot
contain files that are executable programs.

304 | Chapter 14: Sending and Receiving Email Messages

www.it-ebooks.info

http://www.it-ebooks.info/

The MIME content type of each attachment is derived from the filename extension. If
a filename extension is not recognized, the content type is set to application/octet-
stream.

See the official documentation for the complete list of disallowed attachment types, as
well as a list of mappings from extensions to MIME content types.

If you want to deliver files to users that are not allowed as attach‐
ments, one option is to send a link to a request handler that deliv‐
ers the file through the browser. The link can be personalized with
a temporary unique ID, or restricted using Google Accounts
authentication.

Sending Email
The API includes two ways of preparing and sending messages. One way is to call a
function with the fields of the message as keyword arguments. Another is to prepare
the message in an object, then call a method on the object to send the message. The
Mail service API is provided by the google.appengine.api.mail package.

The send_mail() method takes the fields of the message as parameters:

from google.appengine.api import mail
from google.appengine.api import users

message_body = '''
Welcome to Example! Your account has been created.
You can edit your user profile by clicking the
following link:

http://www.example.com/profile/

Let us know if you have any questions.

The Example Team
'''

(admin@example.com is a Google Account that has
been added as a developer for the app.)
mail.send_mail(
 sender='The Example Team <admin@example.com>',
 to=users.get_current_user().email(),
 subject='Welcome to Example.com!',
 body=message_body)

Sending Email Messages | 305

www.it-ebooks.info

http://www.it-ebooks.info/

Alternatively, you can prepare the message using an EmailMessage object, then call its
send() method. The EmailMessage constructor accepts the same arguments as the
send_mail() function:

message = mail.EmailMessage(
 sender='The Example Team <admin@example.com>',
 to=users.get_current_user().email(),
 subject='Welcome to Example.com!',
 body=message_body)

message.send()

You can also set the fields of an EmailMessage using attributes of the object. This
allows you to reuse the same object to send multiple messages with modified values.

The possible fields of a message are listed in Table 14-1.

Table 14-1. Fields of an email message in the Python interface

Field Value Required?

sender The sender’s email address. A string. Required

to A “To” recipient address as a string, or multiple “To” recipient addresses as a list of strings. Required

subject The subject of the message. A string. Required

body The plain-text body of the message. A string. Required

cc A “Cc” recipient address as a string, or multiple “Cc” recipient addresses as a list of strings. Optional

bcc A “Bcc” recipient address as a string, or multiple “Bcc” recipient addresses as a list of strings.
“Bcc” recipients receive the message, but are not included in the content of the message.

Optional

reply_to An alternative address to which clients should send replies instead of the sender address. A
string.

Optional

html An alternative HTML representation of the body of the message, displayed instead of body by
HTML-capable email readers. A string.

Optional

attach

ments

File attachments for the message. A list of tuples, one per attachment, each containing the
filename and the file data.

Optional

headers A dict of additional message headers. See the official documentation for a list of allowed
headers.

Optional

306 | Chapter 14: Sending and Receiving Email Messages

www.it-ebooks.info

http://www.it-ebooks.info/

The value of an email address field (sender, to, cc, bcc, reply_to) can be a plain
email address:

'juliet@example.com'

It can also be an address with a human-readable name, in the standard format (RFC
822):

'Juliet <juliet@example.com>'

When you call the send() method or the send_mail() function, the API checks the
message to make sure it is valid. This includes testing the email addresses for validity,
and making sure the message has all the required fields. You can call functions to
perform these checks separately. The is_email_valid(address) function returns
True if it considers an email address valid. The is_initialized() method of an
EmailAddress object returns True if the object has all the fields necessary for sending.

The API includes a shortcut method that sends an email message to all administra‐
tors (developers) for the application. The send_mail_to_admins() function accepts
the same arguments as send_mail(), but without the recipient fields. There is also an
AdminEmailMessage class that is similar to the EmailMessage class, but with recipi‐
ents set to be the app administrators automatically. When calling this function, the
message size is limited to 16 kilobytes. (This is a safety limit that ensures delivery of
important administrative messages.)

Example 14-1 shows a larger example using EmailMessage, with both plain-text and
HTML parts, and an attachment.

Example 14-1. An example of sending an email message in Python, using several
features

from google.appengine.api import mail

def send_registration_key(user_addr, software_key_data):
 message_body = '''
 Thank you for purchasing The Example App, the best
 example on the market! Your registration key is attached
 to this email.

 To install your key, download the attachment, then select
 "Register..." from the Help menu. Select the key file, then
 click "Register".

 You can download the app at any time from:
 http://www.example.com/downloads/

 Thanks again!

 The Example Team

Sending Email Messages | 307

www.it-ebooks.info

http://www.it-ebooks.info/

 '''

 html_message_body = '''
 <p>Thank you for purchasing The Example App, the best
 example on the market! Your registration key is attached
 to this email.</p>

 <p>To install your key, download the attachment, then select
 Register... from the Help menu. Select the key file, then
 click Register.</p>

 <p>You can download the app at any time from:</p>

 <p>

 http://www.example.com/downloads/

 </p>

 <p>Thanks again!</p>

 <p>The Example Team

 </p>
 '''

 message = mail.EmailMessage(
 sender='The Example Team <admin@example.com>',
 to=user_addr,
 subject='Your Example Registration Key',
 body=message_body,
 html=html_message_body,
 attachments=[('example_key.txt', software_key_data)])

 message.send()

Receiving Email Messages
To receive incoming email messages, you must first enable the feature in your app’s
configuration. Incoming email is disabled by default, so unwanted messages are
ignored and do not try to contact your app or incur costs.

To enable inbound services, you add a section to the app’s configuration file. In
Python, you add a section similar to the following in the app.yaml file:

inbound_services:
- mail

Once your app is deployed, you can confirm that the incoming mail service is
enabled from the Cloud Console, under Application Settings. If your app does not
appear to be receiving HTTP requests for incoming email messages, check the Con‐
sole and update the configuration if necessary.

308 | Chapter 14: Sending and Receiving Email Messages

www.it-ebooks.info

http://www.it-ebooks.info/

With the mail inbound service enabled in configuration, an application can receive
email messages at any of several addresses. An incoming mail message is routed to
the app in the form of an HTTP request.

Email sent to addresses of the following forms are routed to the default version of the
app:

 app-id@appspotmail.com

 anything@app-id.appspotmail.com

The HTTP request uses the POST action, and is sent to the following URL path:

 /_ah/mail/to-address

The recipient email address of the message is included at the end of the URL path, so
the app can distinguish between different values of “anything.”

The body content of the HTTP POST request is the complete MIME email message,
including the mail headers and body. It can be parsed by any library capable of pars‐
ing MIME email messages.

The development server console (http://localhost:8000/) includes a feature for simu‐
lating incoming email by submitting a web form. The development server cannot
receive actual email messages.

If the app has the incoming mail service enabled but does not have
a request handler for the appropriate URL, or if the request handler
returns an HTTP response code other than 200 for the request, the
message gets “bounced” and the sender receives an error email
message.

To configure your app to receive email, you map the incoming email URL path to a
script handler in the app.yaml file:

handlers:
- url: /_ah/mail/.+
 script: handle_email.application

The app address used for the message is included in the URL path, so you can set up
separate handlers for different addresses directly in the configuration:

handlers:
- url: /_ah/mail/support%40.*app-id\.appspotmail\.com
 script: support_contact.application
- url: /_ah/mail/.+
 script: handle_email.application

Email addresses are URL-encoded in the final URL, so this pattern uses %40 to repre‐
sent an @ symbol. Also notice you must include a .* before the application ID when

Receiving Email Messages | 309

www.it-ebooks.info

http://localhost:8000/
http://www.it-ebooks.info/

using this technique, so the pattern works for messages sent to version-specific
addresses (such as support@dev.app-id.appspotmail.com).

The Python SDK includes a class for parsing the POST content into a convenient
object, called InboundEmailMessage (in the google.appengine.api.mail package). It
takes the multipart MIME data (the POST body) as an argument to its constructor.
Here’s an example using the webapp framework:

from google.appengine.api import mail
from google.appengine.ext import webapp2

class IncomingMailHandler(webapp2.RequestHandler):
 def post(self):
 message = mail.InboundEmailMessage(self.request.body)
 sender = message.sender
 recipients = message.to
 body = list(message.bodies(content_type='text/plain'))[0]
 # ...

application = webapp2.WSGIApplication([('/_ah/mail/.+', IncomingMailHandler)],
 debug=True)

The InboundEmailMessage object includes attributes for the fields of the message,
similar to EmailMessage. sender is the sender’s email address, possibly with a display‐
able name in the standard format (Mr. Sender <sender@example.com>). to is a list
of primary recipient addresses, and cc is a list of secondary recipients. (There is no
bcc on an incoming message, because blind-carbon-copied recipients are not
included in the message content.) subject is the message’s subject.

The InboundEmailMessage object may have more than one message body: an HTML
body and a plain-text body. You can iterate over the MIME multipart parts of the
types text/html and text/plain, using the bodies() method. Without arguments,
this method returns an iterator that returns the HTML parts first, and then the plain-
text parts. You can limit the parts returned to just the HTML or plain-text parts by
setting the content_type parameter. For example, to get just the plain-text bodies:

for text_body in message.bodies(content_type='text/plain'):
 # ...

In the example earlier, we extracted the first plain-text body by passing the iterator to
the list() type, then indexing its first argument (which assumes one exists):

text = list(message.bodies(content_type='text/plain'))[0]

If the incoming message has file attachments, then these are accessible on the
attachments attribute. As with using EmailMessage for sending, this attribute is a list
of tuples whose first element is the filename and whose second element is the data
byte string. InboundEmailMessage allows all file types for incoming attachments, and
does not require that the filename accurately represent the file type. Be careful when

310 | Chapter 14: Sending and Receiving Email Messages

www.it-ebooks.info

mailto:sender@example.com
http://www.it-ebooks.info/

using files sent to the app by users, as they may not be what they say they are, and
have not been scanned for viruses.

The Python SDK includes a convenient webapp handler base class for
processing incoming email, called InboundMailHandler in the google.appen

gine.ext.webapp.mail_handlers package. You use the handler by creating a sub‐
class that overrides the receive() method, then installing it like any other handler.
When the handler receives an email message, the receive() method is called with an
InboundEmailMessage object as its argument:

from google.appengine.ext.webapp import mail_handlers

class MyMailHandler(mail_handlers.InboundMailHandler):
 def receive(self, message):
 # ...

application = webapp2.WSGIApplication([('/_ah/mail/.+', MyMailHandler)],
 debug=True)

Receiving Email Messages | 311

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15

Sending and Receiving Instant Messages
with XMPP

So far, we’ve seen two mechanisms an app can use to communicate with the outside
world. The first and most prominent of these is HTTP: an app can receive and
respond to HTTP requests, and can send HTTP requests to other hosts and receive
responses with the URL Fetch service. The second is email: an app can send email
messages by using the Mail service, and can receive messages via a proxy that calls a
request handler for each incoming email message.

In this chapter, we introduce a third method of communication: XMPP, also known
as “instant messages,” or simply “chat.” An app can participate in a chat dialogue with
a user of any XMPP-compatible chat service. The XMPP service is useful for chat
interfaces, such as a chat-based query engine, or a customer service proxy. App
Engine does not act as an XMPP service itself. Instead, it connects to Google’s own
XMPP infrastructure to participate as a chat user.

Sending and receiving XMPP messages works similarly to email messages. To send a
message, an app calls the XMPP service API. To receive a message, the app declares
that it accepts such messages in its configuration, and then handles HTTP requests
sent by the XMPP service to special-purpose URLs. Figure 15-1 illustrates the flow of
incoming XMPP messages.

313

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 15-1. Architecture of incoming XMPP messages, calling web hooks in response to
incoming message events

Each participant in an XMPP communication has an address similar to an email
address, known as a JID. (JID is short for “Jabber ID,” named after the Jabber project,
where XMPP originated.) A JID consists of a username, an “at” symbol (@), and the
domain name of the XMPP server. A JID can also have an optional “resource” string,
which is used to identify specific clients connected to the service with the username.
A message sent to the ID without the resource goes to all connected clients:

username @ domain / resource

To send a message, a chat participant sends an XMPP message to its own XMPP
server. The participant’s chat service contacts the recipient service’s host by using the
domain name of the JID and a standard port, then delivers the message. If the remote
service accepts messages for the JID and someone is connected to the service with a
chat client for that JID, the service delivers the message to the client.

As with email, each app has its own set of JIDs, based on its application ID. For
XMPP chat, the app can receive messages at addresses of these forms:

 app-id@appspot.com

 anything@app-id.appspotchat.com

(Notice the differences in the domain names from the options available for incoming
email.)

App Engine does not support XMPP addresses on a custom domain. This is one of
only a few cases where exposing your application ID to users cannot be avoided.

314 | Chapter 15: Sending and Receiving Instant Messages with XMPP

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s take a look at the features and API of the XMPP service.

Inviting a User to Chat
Before a user of an XMPP-compatible instant messaging service will see any messages
your app sends, the service needs to know that the user is expecting your messages.
This can happen in two ways: either the user explicitly adds your app’s JID to her con‐
tact list, or she accepts an invitation to chat sent by the app.

An app can send an invitation to chat by calling the XMPP service API. For apps, it’s
polite to get the user’s permission to do this first, so the complete workflow looks
something like this:

1. The user visits the website, and activates the chat-based feature of the service,
providing a JID.

2. The app sends an invitation to chat to the user’s JID.
3. The user accepts the invitation in her chat client.
4. The user and app exchange chat messages.

The alternative where the user adds the app’s JID to her contact list is usually equiva‐
lent to sending an invitation to the app. App Engine accepts all such invitations auto‐
matically, even if the app does not accept chat messages.

An accepted invitation entitles both parties to know the other party’s presence status,
whether the party is connected and accepting messages. This includes the ability to
know when an invitation is accepted. (For more information, see “Managing Pres‐
ence” on page 322.)

In the development server, inviting a user to chat emits a log message, but otherwise
does nothing.

To invite a user to chat, you call the send_invite() function in the
google.appengine.api.xmpp module. It takes the recipient JID as its first argument,
and an optional sender JID (from_jid) as its second argument. By default, it uses
app-id@appspot.com as the sender JID:

from google.appengine.api import xmpp

jid = 'juliet@example.com'

xmpp.send_invite(jid) # from app-id@appspot.com

xmpp.send_invite(jid, from_jid='support@app-id.appspotchat.com')

Inviting a User to Chat | 315

www.it-ebooks.info

http://www.it-ebooks.info/

Sending Chat Messages
An XMPP message includes a sender address, one or more recipient addresses, a
message type, and a message body.

The sender address must be one of the app’s incoming XMPP addresses. These are of
the form app-id@appspot.com or anything@app-id.appspotchat.com, where app-
id is your application ID and anything can be any string that’s valid on the left side of
a JID (it can’t contain an @ symbol). Unlike incoming email addresses, it’s not as con‐
venient to use the “anything” form for creating IDs on the fly, because the recipient
needs to accept an invitation from that ID before receiving messages. But it can still
be useful for sessions that begin with an invitation, or addresses that represent spe‐
cific purposes or users of the app (support@app-id.appspotchat.com).

If the version of the app that is sending an XMPP message is not the default version,
App Engine modifies the sender address to a version-specific address, so replies go
directly to the correct version: either anything@version.app-id.appspotchat.com
or app-id@version.app-id.appspotchat.com.

App Engine adds a “resource” to the end of the sender JID (after the domain name)
that looks like this: /bot. This is mostly just to comply with the best practice of send‐
ing messages using JIDs with resources. It isn’t noticed by chat users, and is not
needed when a user wishes to send a message to the app. You’ll see it in log messages.

The message type can be any of the types in the XMPP standard, including chat,
error, groupchat, headline, and normal. An app can only receive messages of the
types chat, normal, and error, and so cannot participate in group chats. For straight‐
forward communication between an app and a chat user, you usually want to send
chat messages. For an app and a custom client, you can do what you like.

Messages are sent asynchronously. The service call returns immediately, and reports
success only if the XMPP service enqueued the message successfully. You can config‐
ure the app to receive error messages, such as to be notified if a sent message was not
received because the user went offline. (See “Handling Error Messages” on page 321.)

When an app is running in the development server, sending an XMPP chat message
or invitation causes the server to print the message to the console. The development
server does not contact the XMPP service or send messages.

316 | Chapter 15: Sending and Receiving Instant Messages with XMPP

www.it-ebooks.info

http://www.it-ebooks.info/

To send a chat message in Python, you call the send_message() function in the goo
gle.appengine.api.xmpp module. The function takes a JID or list of JIDs, the body
of the message, and an optional sender JID (from_jid). It returns a success code, or a
list of success codes, one for each recipient JID:

result = xmpp.send_message(
 'juliet@example.com',
 'Your dog has reached level 12!')

if result != xmpp.NO_ERROR:
 # ...

By default, this sends a message of the “chat” type. You can send a message of a differ‐
ent type by setting the message_type parameter. Acceptable values include:

• xmpp.MESSAGE_TYPE_CHAT (the default)
• xmpp.MESSAGE_TYPE_ERROR

• xmpp.MESSAGE_TYPE_GROUPCHAT

• xmpp.MESSAGE_TYPE_HEADLINE

• xmpp.MESSAGE_TYPE_NORMAL

Complete XMPP messages are sent over the network as XML data. By default,
send_message() treats the text of the message as plain text, and knows to escape
XML characters. Instead of a text message, you can send an XML stanza. This is
included verbatim (assuming the stanza is well formed) in the XMPP message, so you
can send structured data to XMPP clients. To tell send_message() that the content is
an XML stanza so it doesn’t escape XML characters, provide the raw_xml=True
parameter.

The send_message() function returns a status code for each recipient JID, as a single
value if called with a single JID, or as a list of codes if called with a list of JIDs. The
possible status values are:

• xmpp.NO_ERROR

• xmpp.INVALID_JID

• xmpp.OTHER_ERROR

Sending Chat Messages | 317

www.it-ebooks.info

http://www.it-ebooks.info/

Receiving Chat Messages
As with email, to receive incoming XMPP messages, you must first enable the feature
by adding the XMPP inbound services to your app’s app.yaml configuration file:

inbound_services:
- xmpp_message

This is the same configuration list as the mail inbound service. If you’re enabling
both email and XMPP, you provide one list of inbound services with all the items.

Deploy your app, and confirm that incoming XMPP is enabled using the Cloud Con‐
sole, under Application Settings. If your app does not appear to be receiving HTTP
requests for incoming XMPP messages, check the Console and update the configura‐
tion if necessary.

The xmpp_message inbound service routes incoming XMPP messages of the types
chat and normal to your app.

An app receives XMPP messages at several addresses. Messages sent to addresses of
these forms are routed to the default version of the app:

 app-id@appspot.com

 anything@app-id.appspotchat.com

Messages sent to addresses of this form are routed to the specified version of the app,
useful for testing:

 anything@version.app-id.appspotmail.com

Each message is delivered to the app as an HTTP POST request to a fixed URL path.
Chat messages (both chat and normal) become POST requests to this URL path:

 /_ah/xmpp/message/chat/

(Unlike incoming email, the sender JID is not included in these URL paths.)

The body content of the HTTP POST request is a MIME multipart message, with a
part for each field of the message:

from

The sender’s JID

to

The app JID to which this message was sent

body

The message body content (with characters as they were originally typed)

318 | Chapter 15: Sending and Receiving Instant Messages with XMPP

www.it-ebooks.info

http://www.it-ebooks.info/

stanza

The full XML stanza of the message, including the previous fields (with XML
special characters escaped); useful for communicating with a custom client using
XML

The API includes classes for parsing the request data into objects. (See the sections
that follow.)

The development server console (http://localhost:8000/) includes a feature for simu‐
lating incoming XMPP messages by submitting a web form. The development server
cannot receive actual XMPP messages.

When using the development server console to simulate an incom‐
ing XMPP message, you must use a valid JID for the app in the
“To:” field, with the application ID that appears in the app’s config‐
uration. Using any other “To:” address in the development server is
an error.

To handle the incoming messages, you map the URL path to a script handler in the
app.yaml file, as usual:

handlers:
- url: /_ah/xmpp/message/chat/
 script: handle_xmpp.application
 login: admin

As with all web hook URLs in App Engine, this URL handler can be restricted to
admin to prevent anything other than the XMPP service from activating the request
handler.

The Python library provides a Message class that can contain an incoming chat mes‐
sage. You can parse the incoming message into a Message object by passing a map‐
ping of the POST parameters to its constructor. With the webapp2 framework, this is
a simple matter of passing the parsed POST data (a mapping of the POST parameter
names to values) in directly:

from google.appengine.api import xmpp
from google.appengine.ext import webapp2

class IncomingXMPPHandler(webapp2.RequestHandler):
 def post(self):
 message = xmpp.Message(self.request.POST)

 message.reply('I got your message! '
 'It had %d characters.' % len(message.body))

application = webapp2.WSGIApplication([('/_ah/xmpp/message/chat/',
 IncomingXMPPHandler)],
 debug=True)

Receiving Chat Messages | 319

www.it-ebooks.info

http://localhost:8000/
http://www.it-ebooks.info/

The Message object has attributes for each message field: sender, to, and body. (The
attribute for the “from” field is named sender because from is a Python keyword.) It
also includes a convenience method for replying to the message, reply(), which
takes the body of the reply as its first argument.

Handling Commands over Chat
The Message class includes methods for parsing chat-style commands of this form:

 /commandname args

If the chat message body is of this form, the command attribute of the Message is the
command name (without the slash), and the arg attribute is everything that follows.
If the message is not of this form, command is None.

webapp includes a request handler base class that makes it easy to implement chat
interfaces that perform user-issued commands. Here’s an example that responds to
the commands /stats and /score username, and ignores all other messages:

from google.appengine.api import xmpp
from google.appengine.ext import webapp2
from google.appengine.ext.webapp import xmpp_handlers

def get_stats():
 # ...

def get_score_for_user(username):
 # ...

class UnknownUserError(Exception):
 pass

class ScoreBotHandler(xmpp_handlers.CommandHandler):
 def stats_command(self, message):
 stats = get_stats()
 if stats:
 message.reply('The latest stats: %s' % stats)
 else:
 message.reply('Stats are not available right now.')

 def score_command(self, message):
 try:
 score = get_score_for_user(message.arg)
 message.reply('Score for user %s: %d' % (message.arg, score))
 except UnknownUserError, e:
 message.reply('Unknown user %s' % message.arg)

application = webapp2.WSGIApplication(
 [('/_ah/xmpp/message/chat/', ScoreBotHandler)],
 debug=True)

320 | Chapter 15: Sending and Receiving Instant Messages with XMPP

www.it-ebooks.info

http://www.it-ebooks.info/

The CommandHandler base class, provided by the google.appen

gine.ext.webapp.xmpp_handlers package, parses the incoming message for a com‐
mand. If the message contains such a command, the handler attempts to call a
method named after the command. For example, consider a scenario where the app
receives this chat message:

 /score druidjane

The handler will call the score_command() method with a message where
message.arg is 'druidjane'.

If there is no method for the parsed command, the handler will call the
unhandled_command() method, whose default implementation replies to the message
with “Unknown command.” You can override this method to customize its behavior.

The base handler calls the command method with the Message object as an argument.
The method can use the command and arg properties to read the parsed command.

If the incoming message does not start with a /commandname-style command, the base
handler calls the text_message() method with the Message as its argument. The
default implementation does nothing, and you can override it to specify behavior in
this case.

This package also contains a simpler handler class named BaseHandler, with several
useful features. It parses incoming messages, and logs and ignores malformed mes‐
sages. If a message is valid, it calls its message_received() method, which you over‐
ride with the intended behavior. The class also overrides webapp.RequestHandler’s
handle_exception() method to send an XMPP reply with a generic error message
when an uncaught exception occurs, so the user isn’t left to wonder whether the mes‐
sage was received. (CommandHandler extends BaseHandler, and so also has these fea‐
tures.)

Handling Error Messages
When an app calls the XMPP service to send a message, the message is queued for
delivery and sent asynchronously with the call. The call will only return with an error
if the message the app is sending is malformed. If the app wants to know about an
error during delivery of the message (such as the inability to connect to a remote
server), or an error returned by the remote XMPP server (such as a nonexistent user),
it can listen for error messages.

Error messages are just another type of chat message, but the XMPP service separates
incoming error messages into a separate inbound service. To enable this service, add
the xmpp_error inbound service to the app’s app.yaml configuration file:

Handling Error Messages | 321

www.it-ebooks.info

http://www.it-ebooks.info/

inbound_services:
- xmpp_message
- xmpp_error

Error messages arrive as POST requests at this URL path:

 /_ah/xmpp/error/

You handle an error message just as you would a chat message: create a request han‐
dler, map it to the URL path, and parse the POST request for more information.

The SDK’s library doesn’t provide any assistance parsing incoming error messages.
While XMPP error messages are similar in structure to chat messages (with a type of
error), minor differences are not recognized by the message parsers provided. You
can examine the XML data structure in the POST message body, which conforms to
the XMPP message standard. (See the XMPP specification for details.)

Managing Presence
After the user accepts an app’s invitation to chat, both parties are able to see whether
the other party is available to receive chat messages. In XMPP RFC 3921, this is
known as presence. The process of asking for and granting permission to see presence
is called subscription. For privacy reasons, one user must be successfully subscribed to
the other before she can send messages, see presence information, or otherwise know
the user exists.

When a user accepts an app’s invitation to chat (subscription request), the user’s client
sends a “subscribed” message to the app, to confirm that the app is now subscribed. If,
later, the user revokes this permission, the client sends an “unsubscribed” message.
While the app is subscribed to a user, the user’s client will send all changes in pres‐
ence to the app as another kind of message.

Conversely, a user can also send “subscribe” and “unsubscribe” messages to the app.
It’s the app’s responsibility to maintain a list of subscribed users to use when sending
presence updates.

If you’d like to receive these new message types (and be billed for the bandwidth), you
must enable these as separate inbound services. Subscription information (invitation
responses and subscription requests) use the xmpp_subscribe service, and presence
updates use the xmpp_presence service.

Here’s the configuration for app.yaml that enables all four XMPP inbound message
types:

inbound_services:
- xmpp_message
- xmpp_error
- xmpp_subscribe
- xmpp_presence

322 | Chapter 15: Sending and Receiving Instant Messages with XMPP

www.it-ebooks.info

http://xmpp.org/
http://xmpp.org/rfcs/rfc3921.html
http://www.it-ebooks.info/

If you want to know when a user accepts or revokes your app’s chat
invitation, but otherwise do not need to see the user’s presence
updates, you can enable the xmpp_subscribe service without the
xmpp_presence service. This can save on costs associated with the
incoming bandwidth of changes in the user’s presence, which can
be frequent.

As with chat messages, you can simulate incoming subscription and presence mes‐
sages in the development server by using the development server console. Outgoing
subscription and presence messages in the development server are logged to the con‐
sole, but not actually sent.

Managing Subscriptions
An app subscribes to a user when it sends an invitation to chat, with the
send_invite() function. An app cannot send an explicit “unsubscribe” message, only
“subscribe.”

When the user accepts the invitation, her chat client sends a subscribed message to
the app. If the user later revokes the invitation, the client sends an unsubscribed mes‐
sage.

These messages arrive via the xmpp_subscribe inbound service as POST requests on
the following URL paths:

 /_ah/xmpp/subscription/subscribed/
 /_ah/xmpp/subscription/unsubscribed/

A user can send an explicit subscription request (invitation to chat) to the app by
sending a subscribe message. Similarly, the user can explicitly unsubscribe from
presence updates by sending an unsubscribe message. These arrive at the following
URL paths:

 /_ah/xmpp/subscription/subscribe/
 /_ah/xmpp/subscription/unsubscribe/

The subscription process typically happens just once in the lifetime of the relation‐
ship between two chat users. After the users are successfully subscribed, they remain
subscribed until one party explicitly unsubscribes from the other (unsubscribe), or
one party revokes the other party’s invitation (unsubscribed).

If you intend for your app to have visible changes in presence, the app must maintain
a roster of subscribers based on subscribe and unsubscribe messages, and send
updates only to subscribed users.

Incoming subscription-related requests include form-style fields in the POST data,
with the following fields:

Managing Presence | 323

www.it-ebooks.info

http://www.it-ebooks.info/

from

The sender’s JID

to

The app JID to which this message was sent

stanza

The full XML stanza of the subscription message, including the previous fields

Because the POST data for these requests does not contain a body field, you cannot
use the SDK’s Message class to parse the data. You access these fields simply as POST
form fields in the request.

The app gets the subscription command from the URL path.

Here is an outline for a request handler that processes subscription-related messages,
using Python and webapp2:

import webapp2
from google.appengine.api import xmpp

def truncate_jid(jid):
 # Remove the "resource" portion of a JID.
 if jid:
 i = jid.find('/')
 if i != -1:
 jid = jid[:i]
 return jid

class SubscriptionHandler(webapp2.RequestHandler):
 def post(self, command):
 user_jid = truncate_jid(self.request.POST.get('from'))

 if command == 'subscribed':
 # User accepted a chat invitation.
 # ...

 if command == 'unsubscribed':
 # User revoked a chat invitation.
 # ...

 if command == 'subscribe':
 # User wants presence updates from the app.
 # ...

 if command == 'unsubscribed':
 # User no longer wants presence updates from the app.
 # ...

application = webapp2.WSGIApplication(

324 | Chapter 15: Sending and Receiving Instant Messages with XMPP

www.it-ebooks.info

http://www.it-ebooks.info/

 [('/_ah/xmpp/subscription/(.*)/', SubscriptionHandler)],
 debug=True)

As mentioned earlier, an app sends a subscription request ('subscribe') to a
user by calling the xmpp.send_invite(jid) function. There is no way to send an
'unsubscribe' message from an app. If the app no longer cares about a user’s pres‐
ence messages, the only choice is to ignore the incoming presence updates from that
user.

Managing Presence Updates
While an app is subscribed to a user, the user sends changes in presence to the app. If
the app is configured to receive inbound presence messages via the xmpp_presence
service, these messages arrive as POST requests on one of these URL paths:

 /_ah/xmpp/presence/available/
 /_ah/xmpp/presence/unavailable/

Chat clients typically send an available message when connecting, and an
unavailable message when disconnecting (or going “invisible”).

A presence message can also contain additional status information: the presence show
(“show me as”) value and a status message. Most chat clients represent the show value
as a colored dot or icon, and may display the status message as well. And of course,
most chat clients allow the user to change the show value and the message. The possi‐
ble show values, along with how they typically appear in chat clients, are as follows:

chat
The user is available to chat. Green, “available.”

away
The user is away from her computer temporarily and not available to chat. Yel‐
low, “away.” A typical chat client switches to this presence show value automati‐
cally when the user is away from the keyboard.

dnd
“Do not disturb”: the user may be at her computer, but does not want to receive
chat messages. Red, “busy.”

xa
“Extended away”: the user is not available to chat and is away for an extended
period. Red.

In XMPP, availability and the presence show value are distinct concepts. For a user to
appear as “busy,” the user must be available. For example, a red-colored “busy” user is
available, with a show value of “dnd.” Chat clients represent unavailable users either
with a grey icon or by showing the user in another list.

Managing Presence | 325

www.it-ebooks.info

http://www.it-ebooks.info/

An incoming presence update request includes form-style fields in the POST data,
with the following fields:

from

The sender’s JID

to

The app JID to which this message was sent

show

One of several standard presence show values; if omitted, this implies the “chat”
presence

status

A custom status message; only present if the user has a custom status message set,
or is changing her status message

stanza

The full XML stanza of the subscription message, including the previous fields

An app can notify users of its own presence by sending a presence message. If the
app’s presence changes, it should attempt to send a presence message to every user
known to be subscribed to the app. To support this, the app should listen for “sub‐
scribe” and “unsubscribe” messages, and keep a list of subscribed users, as described
in “Managing Subscriptions” on page 323.

An app should also send a presence message to a user if it receives a presence probe
message from that user. (See “Probing for Presence” on page 328.)

As with chat and subscription messages, the development server can simulate incom‐
ing presence messages. However, it cannot include presence show and status strings
in these updates.

Here is an outline for a request handler for processing incoming presence updates,
using webapp2:

import webapp2
from google.appengine.api import xmpp

def truncate_jid(jid):
 # Remove the "resource" portion of a JID.
 if jid:
 i = jid.find('/')
 if i != -1:
 jid = jid[:i]
 return jid

class PresenceHandler(webapp2.RequestHandler):
 def post(self, command):
 user_jid = truncate_jid(self.request.POST.get('from'))

326 | Chapter 15: Sending and Receiving Instant Messages with XMPP

www.it-ebooks.info

http://www.it-ebooks.info/

 if command == 'available':
 # The user is available.

 show = self.request.POST.get('show')
 status_message = self.request.POST.get('status')
 # ...

 elif command == 'unavailable':
 # The user is unavailable (disconnected).
 # ...

application = webapp2.WSGIApplication(
 [('/_ah/xmpp/presence/(.*)/', PresenceHandler)],
 debug=True)

To send a presence update to a single user in Python, you need to call the
xmpp.send_presence() method:

xmpp.send_presence(user_jid,
 status="Doing fine.",
 presence_type=xmpp.PRESENCE_TYPE_AVAILABLE,
 presence_show=xmpp.PRESENCE_SHOW_CHAT)

The send_presence() function takes the jid, a status message (up to 1 kilobyte),
the presence_type, and the presence_show as arguments. presence_type is
either xmpp.PRESENCE_TYPE_AVAILABLE or xmpp.PRESENCE_TYPE_UNAVAILABLE.
presence_show is one of the standard presence show values, which are also available
as library constants: xmpp.PRESENCE_SHOW_CHAT, xmpp.PRESENCE_SHOW_AWAY,
xmpp.PRESENCE_SHOW_DND, and xmpp.PRESENCE_SHOW_XA.

When the app wishes to broadcast a change in presence, it must
call send_presence() once for each user currently subscribed to
the app. Unlike send_message(), you can’t pass a list of JIDs to
send_presence() to send many updates in one API call. A best
practice is to use task queues to query your data for subscribed
users and send presence updates in batches. (See Chapter 16 for
more information on task queues.)

Managing Presence | 327

www.it-ebooks.info

http://www.it-ebooks.info/

Probing for Presence
Chat services broadcast presence updates to subscribed users as a user’s presence
changes. But this is only useful while the subscribed users are online. When a user
comes online after a period of being disconnected (such as if her computer was
turned off or not on the Internet), the user’s client must probe the users in her contact
list to get updated presence information.

When a user sends a probe to an app, it comes in via the xmpp_presence inbound
service, as a POST request to this URL path:

 /_ah/xmpp/presence/probe/

The POST data contains the following fields:

from

The sender’s JID

to

The app JID to which this message was sent

stanza

The full XML stanza of the subscription message, including the previous fields

If your app receives this message, it should respond immediately by sending a pres‐
ence update just to that user.

An app can send a presence probe message to a user. If the app is subscribed to the
user, the user will send a presence message to the app in the usual way.

In the development server, outgoing probe messages are logged to the console, and
not actually sent. There is currently no way to simulate an incoming probe message in
the development console.

Here’s how you would extend the PresenceHandler in the previous Python example
to respond to presence probes:

class PresenceHandler(webapp2.RequestHandler):
 def post(self, command):
 user_jid = truncate_jid(self.request.POST.get('from'))

 if command == 'available':
 # ...
 elif command == 'unavailable':
 # ...

 elif command == 'probe':
 # The user is requesting the app's presence information.
 xmpp.send_presence(
 user_jid,

328 | Chapter 15: Sending and Receiving Instant Messages with XMPP

www.it-ebooks.info

http://www.it-ebooks.info/

 presence_type=xmpp.PRESENCE_TYPE_AVAILABLE,
 presence_show=xmpp.PRESENCE_SHOW_CHAT)

To send a presence probe to a user, you call xmpp.send_presence() with a
presence_type of xmpp.PRESENCE_TYPE_PROBE:

 xmpp.send_presence(jid, presence_type=xmpp.PRESENCE_TYPE_PROBE)

The reply comes back as a presence update message.

Managing Presence | 329

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16

Task Queues and Scheduled Tasks

The App Engine architecture is well suited for handling web requests, small amounts
of work that run in a stateless environment with the intent of returning a response to
the user as fast as possible. But many web applications have other kinds of work that
need to get done, work that doesn’t fit in the fast response model. Instead of doing the
work while the user waits, it’s often acceptable to record what work needs to get done,
respond to the user right away, then do the work later, within seconds or minutes.
The ability to make this trade-off is especially useful with scalable web applications
that use a read-optimized datastore, because updating an element of data may require
several related but time-consuming updates, and it may not be essential for those
updates to happen right away.

Consider a simple example. You’re the leader of your guild, and you’re scheduling a
raid on the Lair of the Basilisk for next Thursday. When you post the invitation, two
things need to happen: the raid is recorded on the guild calendar, and an invitation is
sent to each member of the guild by email. If the app tries to do all of this in a single
request handler, you might be staring at the browser’s spinning wheel for a while as
the app calls the Mail API for each member of the guild. For a particularly large guild,
the request handler might not even finish within 60 seconds, you’ll see a server error,
and only some members will see the invitation. How do we fix this?

What we need is a way to do work outside of a user-facing request handler. By “out‐
side,” we mean code that is run separately from the code that evaluates a request from
a user and returns a response to the user. This work can run in parallel to the user-
facing request handler, or after the request handler has returned a response, or com‐
pletely independently of user requests. We also need a way to request that this work
be done.

App Engine has two major mechanisms for initiating this kind of work: task queues
and scheduled tasks. A task is simply a request that a unit of work be performed sepa‐

331

www.it-ebooks.info

http://www.it-ebooks.info/

rately from the code requesting the task. Any application code can call the task queue
service to request a task, and the task queue manages the process of driving the task
to completion. Scheduled tasks are tasks that are invoked on a schedule that you
define in a configuration file, separately from any application code or queue
(although a scheduled task is welcome to add other tasks to a queue, as is any other
task running on App Engine).

In the terminology of task queues, a producer is a process that requests that work be
done. The producer enqueues a task that represents the work onto a queue. A con‐
sumer is a process, separate from the producer, that leases tasks on the queue that it
intends to perform. If the consumer performs a task successfully, it deletes the task
from the queue so no other consumer tries to perform it. If the consumer fails to
delete the task, the queue assumes the task was not completed successfully, and after
an amount of time, the lease expires and becomes available again to other consumers.
A consumer may also explicitly revoke the lease if it can’t perform the task.

Task queues are a general category for two mechanisms for driving work to comple‐
tion: push queues and pull queues. With push queues, App Engine is the consumer: it
executes tasks on the queues at configurable rates, and retries tasks that return a fail‐
ure code. With pull queues, you provide the consumer mechanism that leases task
records off of a queue, does the work they represent, and then deletes them from the
queue. Your custom mechanism can run on App Engine, or it can run on your own
infrastructure and pull tasks, using a REST API.

To perform a task on a push queue, App Engine does what it does best: it invokes a
request handler! You can configure a URL path in your app per queue, or specify a
specific URL path when you enqueue a task. To implement the task, you simply
implement a request handler for requests sent to that URL. Naturally, you can secure
these URLs against outside requests, so only tasks can trigger that logic. This is why
we’ve been making a distinction between “user-facing” request handlers and other
handlers. All code on App Engine runs in a request handler, and typically code for
handling user requests is distinct from code for performing tasks.

Scheduled tasks also run on App Engine, and also use request handlers. You config‐
ure a schedule of URL paths and times, and App Engine calls your application at
those URL paths at the requested times. Scheduled tasks are not retried to comple‐
tion, but you can achieve this effect by having a scheduled task enqueue a task on a
queue.

All of these mechanisms support a major design goal for App Engine applications: do
as much work outside of user-facing requests as possible, so user-facing requests are
as fast as possible. Task queues allow your code to request that work be done sepa‐
rately from the current unit of work. Scheduled tasks initiate computation on a pre‐
defined schedule, independently of other code. The results of this work can be stored

332 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

in the datastore, memcache, and Cloud Storage, so user-facing request handlers can
retrieve and serve it quickly, without doing the work itself.

Enqueueing a task is fast, about three times faster than writing to the datastore. This
makes tasks useful for pretty much anything whose success or failure doesn’t need to
be reported to the user in the response to the user request that initiates the work. For
example, an app can write a value to the memcache, then enqueue a task to persist
that value to the datastore. This saves time during the user request, and allows the
task to do bookkeeping or make other time-consuming updates based on the change
(assuming it meets the application’s needs that the bookkeeping happens later than
the initial update).

App Engine invokes a request handler for a push queue task or scheduled task in the
same environment as it does a handler for a user request, with a few minor differ‐
ences. Most notably, a task handler can run continuously for up to 10 minutes,
instead of 60 seconds for user-facing request handlers. In some cases, it can be better
to implement task handlers with short running times, then split a batch of work over
multiple tasks, so the tasks can be executed in parallel in multiple threads or on mul‐
tiple instances. But 10 minutes of headroom let you simplify your code for work that
can or must take its time on an instance.

Figure 16-1 illustrates how task queues and scheduled tasks take advantage of the
request handler infrastructure.

Figure 16-1. Architecture of push queues and scheduled tasks (“cron”)

The development server maintains push and pull queues, and can run push queues in
the background and simulate their timing and throttling behaviors. Of course, it
won’t be as fast as running on App Engine, but it’s enough to test the behavior. You
can use the development server console to inspect the configured queues, check their

Task Queues and Scheduled Tasks | 333

www.it-ebooks.info

http://www.it-ebooks.info/

contents, and delete individual tasks or all tasks on a queue (“Purge Queue”). With
push queues, you can also force a task to run from the console.

Basilisk raid invitations are now easy. When you submit the raid event creation form,
a single request handler stores the event information in the datastore, initiates a task,
then returns a success code. Later, possibly mere seconds later, App Engine pops the
task off the task queue and calls the “send email” handler. This task can run for up to
10 minutes, so it can just iterate over all of the guild members and send an email for
each one. If there are so many members that 10 minutes isn’t enough, the handler can
enqueue another task, storing a datastore query cursor with the task data to mark
where it left off. Everyone shows up, and the raid is a smashing success.

Task queues are an important part of App Engine, with several powerful features for
structuring your work and optimizing your application’s behavior. Not the least of
these features is how task queues integrate with the App Engine datastore transac‐
tions. In this chapter, we describe the concepts of task queues and scheduled tasks,
and how to use them in applications. We take a brief look at pull queues and consider
how they are useful. We cover using tasks and datastore transactions to achieve spe‐
cial effects, especially eventually consistent data operations and task chaining. And
finally, we review the queue-related features of the Cloud Console.

Configuring Task Queues
Every app has one default push queue with default settings. You can use a configura‐
tion file to change the settings of the default push queue, create new named push and
pull queues each with their own settings, and set global parameters for task queues in
general.

To configure task queues, create a file named queue.yaml. This is a YAML file (same
as app.yaml). Here is an example file that updates the rate of the default queue, and
defines a new named push queue with its own configuration:

queue:
- name: default
 rate: 10/s
- name: attack_effects
 rate: 100/s
 bucket_size: 20

(We’ll see what these settings do in a moment.)

Task queues contain durable data, and this storage counts toward your billable stor‐
age quota, just like data in the datastore. You can set a total limit for the amount of
task queue data to store with configuration. In queue.yaml, this setting is named
total_storage_limit:

334 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

total_storage_limit: 200M

queue:
...

Its value is a number followed by a unit of storage measurement, such as M for mega‐
bytes, G for gigabytes, or T for terabytes.

The default mode for a queue is to be a push queue. To declare a queue a pull queue,
you set the mode of the queue to pull:

queue:
- name: process_images
 mode: pull

We’ll mention additional configuration options when we discuss push queues and
pull queues in more detail.

Task queue configuration is uploaded when you deploy your application. You can
upload new task queue configuration separately from the rest of your app with the
AppCfg tool’s update_queues command:

appcfg.py update_queues appdir

Task queue configuration is distinct from application configuration
(app.yaml), and is kept in a separate file. Unlike application config‐
uration, task queue configuration modifies the behavior of task
queues for the entire application. All application versions use the
same task queue configuration.

Enqueuing a Task
Your app adds a task to a queue (it enqueues the task) by calling the task queue service
API with appropriate arguments. Some arguments are specific to push queues or pull
queues, but the main API is the same for both.

An application enqueues tasks by using the API provided by the
google.appengine.api.labs.taskqueue module. The simplest way to enqueue a
task is to call the add() function. Without arguments, the add() function enqueues a
task to the default queue by using the default options for that queue:

from google.appengine.api import taskqueue

...
 taskqueue.add()

The default queue is a push queue, so App Engine will process this task by invoking a
request handler at a URL path. The default URL path for the default queue is:

/_ah/queue/default

Enqueuing a Task | 335

www.it-ebooks.info

http://www.it-ebooks.info/

You map the URL to a request handler that performs the task in the app.yaml file. You
can restrict the URL so that it can only be called by task queues and by the app’s
developers (for testing), using login: admin, like so:

handlers:
- url: /_ah/queue/default
 script: default_task.app
 login: admin

With this configuration, the no-argument call to the add() function enqueues the
task on the default queue with the default URL and no arguments. When the task
queue processes this task, it issues an HTTP POST request with default arguments to
the URL path /_ah/queue/default, which invokes the default_task.app request han‐
dler.

The add() function returns immediately after the task is enqueued. The actual execu‐
tion of the task happens separately from the rest of the code that called add().

You can pass arguments to the add() function to specify aspects of the task or the
queue. The Python API offers an object-oriented alternative with the Task and Queue
classes. For example, here are several ways to add a task to a queue named
reward_players:

Add a task to the reward_players queue, using the add() function.
taskqueue.add(queue_name='reward_players')

Construct a Task, and add it to the reward_players queue,
using its add() method.
t = taskqueue.Task()
t.add(queue_name='reward_players')

Construct a Queue for the reward_players queue, then add
a Task to it.
t = taskqueue.Task()
q = taskqueue.Queue('reward_players')
q.add(t)

As shown, the queue_name argument to the add() function, the Task object’s add()
method, or the Queue constructor, specifies the queue name. This corresponds with
the name queue configuration parameter in queue.yaml. If the queue name is anything
other than 'default', the queue must appear in the configuration file with the name
parameter for the queue to exist.

You set parameters of the task itself by passing keyword arguments to either the
add() function or the Task constructor. We’ll introduce these parameters in a
moment.

336 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

You can add multiple tasks to a single queue in a single service call (a batch call). You
must use the Queue object’s add() method for this. To make a batch call, pass an itera‐
ble of Task objects as the first argument to add():

...
 tasks = []
 for e in elems:
 tasks.append(Task(params=e.params))

 queue = Queue('process_elems')
 queue.add(tasks)

Tasks are routed and handled by the app like any other request. If
you want a task queue task (or cron job) to be processed by a mod‐
ule other than the default module, use a dispatch.yaml file to route
requests for a URL path to the module, then assign that URL to the
tasks. (Refer back to Chapter 5.)

Task Parameters
A task record on a queue carries two kinds of parameters: parameters that are passed
on to the code or system performing the task, and parameters that affect how the task
is managed on the queue. You set these parameters when you enqueue the task. After
the task is enqueued, the parameters can’t be changed, although you can delete and
re-create a task, as needed.

The following sections describe task parameters common to both push queues and
pull queues. We’ll look at mode-specific options later.

Payloads
A task’s payload is a set of data intended for the system performing the task. You don’t
need a payload if the task handler already knows what to do, but it’s useful to write
task handling code in a general way, and parameterize its behavior with a payload.

For example, you could have a task that performs a transformation on a datastore
entity, such as to update its property layout to a new schema. The task handler would
take the ID of an entity to transform, and perform one transformation. You’d then
have a process (possibly also managed with task queues) that traverses all the entities
that need transformation with a datastore query, and creates a task for each entity,
using the task handler and a payload.

For convenience, the task API has two ways to set a payload: as a byte string, or as a
set of named parameters with byte string values. When you set a payload as a set of
parameters, the data is formatted like a web form (application/x-www-form-
urlencoded), so the task handler can parse the payload into parameters, using typical

Task Parameters | 337

www.it-ebooks.info

http://www.it-ebooks.info/

web request handling code. Payloads and parameters are mutually exclusive: you set
one or the other, not both.

To set a payload, you specify either the payload argument as a str, or the params
argument as a mapping of names to values. A parameter value may be a string, or a
list of strings:

 taskqueue.add(payload=img_data)

 taskqueue.add(params={'entity_key': str(e.key()), 'version': '7'})

 t = taskqueue.Task(payload=img_data)
 q = taskqueue.Queue()
 q.add(t)

Task Names
Every task has a unique name. By default, App Engine will generate a unique name
for a task when it is added to a queue. You can also set the task name in the app. A
task name can be up to 500 characters, and can contain letters, numbers, underscores,
and hyphens.

If an app sets the name for a task and another task already exists for that name on a
given queue, the API will raise an exception when the app adds the task to the queue.
Task names prevent the app from enqueuing the same task more than once on the
same queue. App Engine remembers in-use task names for a period of time after the
task completes, on the order of days. (The remembered names are called tombstones
or tombstoned tasks.)

This is especially useful when enqueuing a task from within a push task handler.
Consider the datastore entity transformation example again. A master task performs
a datastore query, then creates a transformation task for each entity in the results, like
so:

class MasterTaskHandler(webapp2.RequestHandler):
 def post(self):
 for entity in models.MyEntity.all():
 taskqueue.add(queue_name='upgrade',
 params={'entity_key': str(entity.key()),
 'version': '7'})

If there is a datastore error while the master task is fetching results, the datastore
raises an exception, which bubbles up to webapp, and the request handler returns an
HTTP 500 server error. The push queue sees the error, then retries the master task
from the beginning. If the first run of the master task successfully enqueued some
tasks for entities to the 'upgrade' queue, those entities will be added to the queue
again, wasting work.

338 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

The master task handler can guard against this by using a task name for each task that
uniquely represents the work. In the preceding example, a good task name might be
the entity’s key concatenated with the upgrade version (the two parameters to the
task):

import re
import webapp2

from google.appengine.api import taskqueue

class MasterTaskHandler(webapp2.RequestHandler):
 def post(self):
 for entity in models.MyEntity.all():
 try:
 task_name = str(entity.key()) + 'v7'
 task_name = re.sub('[^a-zA-Z0-9_-]', '_', task_name)
 taskqueue.add(queue_name='upgrade',
 name=task_name,
 params={'entity_key': str(entity.key()),
 'version': '7'})
 except taskqueue.DuplicateTaskNameError, e:
 pass

As seen here, you set the task name with the name parameter. An attempt to add a task
with a name already in use raises a DuplicateTaskNameError. (In this example, we
catch and ignore the exception because we can be confident that the task is enqueued
and will be completed.)

Take care when using datastore keys, query cursors, and other val‐
ues as parts of task names that the resulting name meets the
requirements of task names. A task name can contain letters, num‐
bers, underscores, and hyphens. Base64-encoded values (such as
string-ified datastore keys) use this alphabet, but may use equal-
sign (=) characters for padding. The preceding examples use a reg‐
ular expression to substitute characters outside of this alphabet
with underscores.

Countdowns and ETAs
By default, a task is made available to run immediately. A push queue can execute an
available task whenever it is ready (subject to its rate limiting configuration, which
we’ll see later). The consumer of a pull queue sees only available tasks when it
requests a lease.

You can delay the availability of a task when you add it, so it doesn’t become available
until a later time. You specify this as either a number of seconds into the future from
the time of the enqueue operation (a countdown), or an explicit date and time in the
future (an earliest time of availability, or ETA). Delaying the availability of a task can

Task Parameters | 339

www.it-ebooks.info

http://www.it-ebooks.info/

be a useful way to slow down a complex multistage process, such as to avoid hitting a
remote server too often.

In task configuration, these are the countdown and eta options, respectively. A count
down is a number of seconds. An eta is a Unix epoch date-time in the future:

 # Execute no earlier than 5 seconds from now.
 taskqueue.add(params={'url': next_url}, countdown=5)

 # Execute no earlier than December 31, 2012, midnight UTC.
 taskqueue.add(params={'url': next_url}, eta=1356940800)

Countdowns and ETAs specify the earliest time the task will be
available, not the exact time the task will be performed. Do not rely
on ETAs as exact timers.

Push Queues
Push queues are queues of tasks that are performed automatically by App Engine at a
configurable rate. App Engine performs a task by invoking a request handler of your
app. It forms an HTTP request based on the contents of the task record, and issues
the request to a URL path associated with the task. App Engine uses the HTTP status
code of the response to decide whether the task was completed successfully and
should be deleted from the queue. Unsuccessful tasks are retried again later.

Because tasks on push queues are just requests to your app, they use the same infra‐
structure as any other request handler. You implement tasks by implementing request
handlers mapped to URLs, using your web application framework of choice. Tasks
are executed in threads of instances, and use the same automatic scaling mechanism
as user requests. A queue with multiple tasks will distribute the tasks to multiple
instances to be performed in parallel, based on the availability of instances and the
processing rate of the queue.

You can control aspects of the HTTP request for a task by setting task options. You
can also configure aspects of how push queues process tasks, and how tasks are
retried.

Task Requests
You can set various aspects of the HTTP request issued for a task using task options,
including the URL, the HTTP method, and request headers. The payload for the task
also becomes part of the request, depending on the method.

By default, the URL path for a task is based on the queue name, in this format:

/_ah/queue/queue_name

340 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

You can override the URL path for an individual task. This is the url option to task
queue.Task() or taskqueue.add():

 taskqueue.add(url='/admin/tasks/persist_scores')

If there is no request handler mapped to the URL for a task (or the
task’s queue, if no custom URL is specified), the invocation of the
task will return a 404 status code. This is interpreted by the push
queue as task failure, and the task is added back to the queue to be
retried. You can delete these tasks by flushing the queue in the
Cloud Console, or by pushing a software version that supplies a
successful handler for the task URL.

By default, the HTTP request uses the POST method. You can change this with the
method option, with one of these string values: 'GET', 'POST', 'PUT', 'PULL', 'HEAD',
or 'DELETE'.

You can set HTTP headers on the task’s request. To do so, provide a headers argu‐
ment, whose value is a mapping of header names to header string values. Alterna‐
tively, you can set multiple headers in one call with the headers() builder method,
which takes a mapping (dict).

Task queues have special behavior with regard to app versions. If the version of the
app that enqueued a task was the default version, then the task uses the default ver‐
sion of the app when it executes—even if the default version has changed since the
task was enqueued. If the version of the app that enqueued the task was not the
default version at the time, then the task uses that version specifically when it exe‐
cutes. This allows you to test nondefault versions that use tasks before making them
the default. You can set a specific version for a task by using the target option.

App Engine adds the following headers to the request automatically when invoking
the request handler, so the handler can identify the task record:

X-AppEngine-QueueName

The name of the queue issuing the task request

X-AppEngine-TaskName

The name of the task, either assigned by the app or assigned by the system

X-AppEngine-TaskRetryCount

The number of times this task has been retried

X-AppEngine-TaskETA

The time this task became available, as the number of microseconds since Janu‐
ary 1, 1970; this is set when the app specifies a countdown or an ETA, or if the
task was retried with a delay

Push Queues | 341

www.it-ebooks.info

http://www.it-ebooks.info/

Incoming requests from outside App Engine are not allowed to set these headers, so a
request handler can test for these headers to confirm the request is from a task queue.

Task requests are considered to be from an administrator user for the purposes of the
URL access control in app.yaml. You can restrict task URLs to be administrator-only,
and then only task queues (and actual app administrators) can issue requests to the
URL.

The body of a response from a task’s request handler is ignored. If the task needs to
store or communicate information, it must do so by using the appropriate services or
by logging messages.

A call to a task handler appears in the request log, just like a user-initiated web
request. You can monitor and analyze the performance of tasks just as you would
user requests.

Processing Rates and Token Buckets
The processing rate for a queue is controlled using a “token bucket” algorithm. In this
algorithm, a queue has a number of “tokens,” and it spends a token for each task it
executes. Tokens are replenished at a steady rate up to a maximum number of tokens
(the “bucket size”). Both the replenishment rate and the bucket size are configurable
for a queue.

If a queue contains a task and has a token, it usually executes the task immediately. If
a queue has many tasks and many available tokens, it executes as many tasks as it can
afford, immediately and in parallel. If there are tasks remaining, the queue must wait
until a token is replenished before executing the next task. The token bucket algo‐
rithm gives a queue the flexibility to handle bursts of new tasks, while still remaining
within acceptable limits. The larger the bucket, the more tasks an idle queue will exe‐
cute immediately when the tasks are enqueued all at once.

I say it usually executes the tasks immediately because App Engine may adjust the
method and rate of how it executes tasks based on the performance of the system. In
general, task queue schedules are approximate, and may vary as App Engine balances
resources.

A queue does not wait for one task to finish before executing the next task. Instead, it
initiates the next task as soon as a token is available, in parallel with any currently
running tasks. Tasks are not strictly ordered, but App Engine makes an effort to per‐
form tasks in the order they are enqueued. Tasks must not rely on being executed
serially or in a specific order.

Each task queue has a name and processing rate (token replenishment rate and
bucket size). Every app has a queue named default that processes 5 tasks per second,
with a bucket size of 5. If you don’t specify a queue name when enqueueing a task, the

342 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

task is added to the default queue. You can adjust the rate and bucket size of the
default queue, and can set the rate to 0 to turn it off. Tasks enqueued to a paused
queue remain on the queue until you upload the new configuration with a positive
rate.

Task queues and token buckets help you control how tasks are executed so you can
plan for maximizing throughput, making the most efficient use of system resources
to execute tasks in parallel. Tasks inevitably share resources, even if the resource is
just the pool of warmed-up application servers. Executing a bunch of tasks simulta‐
neously may not be the fastest way to complete all the tasks, because App Engine may
need to start up new instances of the application to handle the sudden load. If multi‐
ple tasks operate on the same entity groups in the datastore, it may be faster to per‐
form only a few tasks at a time and let datastore retries sort out contention, instead of
relying on task retries to drive in all the changes. Limiting the execution rate with
token buckets can actually result in faster completion of multiple tasks.

Queue processing rates are configured using the queue.yaml configuration file. You
specify the rate of bucket replenishment using the rate option for a queue. Its value is
a number, a slash (/), and a unit of time (s for seconds), such as 20/s for 20 tokens
per second.

You specify the size of the token bucket with the bucket_size option. Its value is a
number:

queue:
- name: fast_queue
 rate: 20/s
 bucket_size: 10

In addition to the rate and bucket size, you can set a maximum number of tasks from
the queue that can be executed at the same time, with the max_concurrent_requests
option. Its value is the number of tasks. If this many task requests are in progress, the
queue will wait to issue another task even if there are tokens in the bucket. This
allows for large bucket sizes but still prevents bursts of new tasks from flooding
instances. It also accommodates tasks that take a variable amount of time, so slow
tasks don’t take over your instances.

Together, these options control the flow of tasks from the push queue into the request
queue for the application. If a given queue is processing tasks too quickly, you can
upload a new temporary configuration for the queue that tells it to run at a slower
rate, and the change will take effect immediately. You can experiment with different
rates and token bucket sizes to improve task throughput.

Push Queues | 343

www.it-ebooks.info

http://www.it-ebooks.info/

Retrying Push Tasks
To ensure that tasks get completed in a way that is robust against system failure, a
task queue will retry a task until it is satisfied the task is complete.

A push queue retries a task if the request handler it invokes returns an HTTP
response with a status code other than a “success” code (in the range 200–299). It
retries the task by putting it back on the queue with a countdown, so it’ll wait a bit
before trying again in the hopes that the error condition will subside. You can config‐
ure the retry behavior for every queue in a task by using the queue configuration, and
you can override this configuration on a per-task basis with task options.

Under very rare circumstances, such as after a system failure, a task may be retried
even if it completed successfully. This is a design trade-off that favors fast task cre‐
ation over built-in, once-only fault tolerance. A task that can be repeated without
changing the end result is called idempotent. Whether a task’s code must be strictly
idempotent depends on what the task is doing and how important it is that the calcu‐
lation it is performing be accurate. For instance, a task that deletes a datastore entity
can be retried because the second delete fails harmlessly.

Because a task on a push queue is retried when its handler returns
anything other than a successful HTTP status code, a buggy han‐
dler that always returns an error for a given input will be retried
indefinitely, or until the retry limit is reached if a retry limit was
specified.
If a task needs to abort without retrying, it must return a success
code.

There are five parameters that control how push queues retry a given task. We’ll
define these parameters first. Then we’ll see how to set defaults for these parameters
in queue configuration, and how to override them for a specific task.

The task_retry_limit is the maximum number of times a failing task is retried
before it is deleted from the queue. If you do not specify a retry limit, the task is
retried indefinitely, or until you flush the cache or delete the task by some other
means. A retry limit is a good guard against perpetual failure (such as a bug in a task),
and in some cases it makes sense to abort a task in transient but long-lasting failure
conditions. Be sure to set it high enough so that tasks can accommodate brief transi‐
ent failures, which are to be expected in large distributed systems.

The task_age_limit calls for automatic deletion of an incomplete task after a period
of time on the queue. If not specified, the task lives until it succeeds, hits its retry
limit, or is deleted by other means. Its value is a number followed by a unit of time: s
for seconds, m for minutes, h for hours, d for days. For example, 3d is three days.

344 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

When a task fails, it is added back to the queue with a countdown. The duration of
this countdown doubles each time the task is retried, a method called exponential
backoff. (The queue is “backing off ” the failing task by trying it less frequently with
each failure.) Three settings control the backoff behavior. min_backoff_seconds is
the minimum countdown, the countdown of the first retry. max_backoff_seconds is
the maximum; retries will increase the countdown up to this amount. These values
are an amount of time, as a number of seconds. Finally, the max_doublings setting
lets you set the number of times the countdown doubles. After that many retries, the
countdown stays constant for each subsequent retry.

To set any of these retry options as the default for all tasks added to a queue, you add
them to the queue configuration file, in a retry_parameters subsection of the queue’s
configuration. Here’s an example of retry configuration in queue.yaml:

queue:
- name: respawn_health
 rate: 2/s
 retry_parameters:
 task_retry_limit: 10
 max_doublings: 3

To override these settings for a task, you set the retry_options argument to task
queue.Task() or taskqueue.add() with an instance of the TaskRetryOptions()
class. The class’s constructor takes the retry options as keyword arguments, and vali‐
dates them:

 t = taskqueue.Task(
 retry_options=taskqueue.TaskRetryOptions(
 task_retry_limit=10,
 max_doublings=3))
 q = taskqueue.Queue('respawn_health')
 q.add(t)

Pull Queues
In our initial definition of a task queue, we said that a queue has a producer and a
consumer. With push queues, the producer is application code running in an App
Engine request handler, and the consumer is the App Engine push queue mechanism,
which calls request handlers to do the actual work of the task. With pull queues, you
provide the consumer logic. The consumer calls the pull queue to lease one or more
tasks, and the queue ensures that a task is leased to only one consumer at a time. Typ‐
ically, the consumer deletes the task from the queue after performing the correspond‐
ing work, so no other consumer sees it. If the consumer fails to delete it, eventually
the lease expires and the pull queue makes the task available to consumers again.

A pull queue is useful when you want to customize the consumer logic. For example,
the push queue driver consumes one task at a time, executing a separate request han‐

Pull Queues | 345

www.it-ebooks.info

http://www.it-ebooks.info/

dler for each task. With a pull queue, a custom consumer can lease multiple related
tasks at once, and perform them together as a batch. This might be faster or more
productive than doing it one at a time. For example, each task might represent an
update to an entity group in the datastore. If a pull queue consumer sees multiple
updates in the queue, it can lease them all in a batch, and make a single transactional
update to the entity group for all of them. This is likely to be faster than multiple push
queue tasks each trying to make their own transactional update to the same data.

You can build pull queue consumers on App Engine, using request handlers (such as
a scheduled task that processes the queue periodically), or using a long-running pro‐
cess on a backend that polls for new tasks on a recurring basis. You can also build a
consumer that runs on a remote system, using the task queue web service REST API.
With a remote consumer, your app can enqueue tasks that trigger behavior in sepa‐
rate systems. The REST API also allows you to build remote producers that add tasks
to pull queues. (A remote producer can’t add to push queues directly, but a local con‐
sumer running on App Engine could periodically convert remotely added tasks to
push queue tasks.)

To create a pull queue, you add it to the queue configuration file. A pull queue must
have a name, and must have its mode set to pull. In queue.yaml:

queue:
- name: update_leaderboard
 mode: pull

Enqueuing Tasks to Pull Queues
You enqueue a task on a pull queue similarly to how you enqueue a task on a push
queue, using a named queue whose mode is pull. As with push queues, a task on a
pull queue can have a payload, a task name, and a countdown or ETA.

A task added to a pull queue must have a method set to PULL. This tells the queue that
the task is only compatible with the queue when it is in the pull queue mode. This is
the method='PULL' argument:

 taskqueue.add(queue_name='update_leaderboard', method='PULL')

Leasing and Deleting Tasks
A pull queue consumer running on App Engine can use the task queue service API to
lease and delete tasks.

A lease is a guarantee that the consumer that acquired the lease has exclusive access
to a task for a period of time. During that time, the consumer can do whatever work
corresponds with that task record. The consumer is expected to delete the task at the
end.

346 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

To lease tasks from a pull queue, you call a method of the queue specifying the dura‐
tion of the lease and the maximum number of tasks. The service reserves up to that
many tasks currently available on the queue for the requested amount of time, then
returns identifiers for each of the successfully leased tasks. You can use these identifi‐
ers to delete the tasks, or update leases.

You construct the Queue object for the named pull queue, then call the
lease_tasks() method. Its arguments are the lease duration as a number of seconds,
and the maximum number of tasks to return. The method returns a list of Task
objects, possibly empty if the queue has no available tasks:

 # Lease 5 tasks from update_leaderboard for up to 20 seconds.
 queue = Queue('update_leaderboard')
 tasks = queue.lease_tasks(20, 5)

 for task in tasks:
 # Read task.payload and do the corresponding work...

Once the consumer has executed the work for a task successfully, it must delete the
task to prevent it from being re-leased to another consumer. You call the
delete_task() method of the Queue, passing it a Task object or a list of Task objects
to delete:

 # ...
 queue.delete_task(tasks)

Each of the examples shown here leases a batch of tasks, does the
work for all the tasks, and then deletes them all with another batch
call. When using this pattern, make sure the lease duration is long
enough to accommodate all the work in the batch. Even if you
delete each task as it finishes, the last task must wait for all of the
others.

If the consumer needs more time, you can renew the lease without relinquishing it to
another consumer. The Queue method modify_task_lease() takes the Task and a
number of seconds for the new lease.

Retrying Pull Queue Tasks
When a lease duration on a task expires, the task becomes available on the pull queue.
When another consumer leases tasks from the queue, it may obtain a lease on the
task and start the work again. This is the pull queue equivalent of a “retry”: if the first
consumer failed to delete the task before the lease expired, then the task is assumed to
have failed and needs to be tried again.

You can set a limit to the number of times a task is retried. This can be a default for all
tasks added to a queue, in the queue configuration. You can also set this for an indi‐

Pull Queues | 347

www.it-ebooks.info

http://www.it-ebooks.info/

vidual task, overriding the queue default. If the lease for a task is allowed to expire as
many times as the limit for the task, the task is deleted automatically.

To configure a retry limit for a queue in queue.yaml, you extend the queue’s configu‐
ration with a retry_parameters section, including a task_retry_limit value:

queue:
- name: update_leaderboard
 retry_parameters:
 task_retry_limit: 10

To set the limit for an individual task, you provide the retry_options argument with
a TaskRetryOptions instance as its value, passing the limit to the constructor:

 t = taskqueue.Task(
 retry_options=taskqueue.TaskRetryOptions(
 task_retry_limit=10))
 q = taskqueue.Queue('update_leaderboard')
 q.add(t)

Transactional Task Enqueueing
Task queues are an essential reliability mechanism for App Engine applications. If a
call to enqueue a task is successful, and the task can be completed, the task is guaran‐
teed to be completed, even given the possibility of transient service failure. It is com‐
mon to pair the reliability of task queues with the durability of the datastore: tasks
can take datastore values, act on them, and then update the datastore.

To complete this picture, the task queue service includes an extremely useful feature:
the ability to enqueue a task as part of a datastore transaction. A task enqueued
within a transaction is only enqueued if the transaction succeeds. If the transaction
fails, the task is not enqueued.

This opens up a world of possibilities for the datastore. Specifically, it enables easy
transactions that operate across an arbitrary number of entity groups, with eventual
consistency.

Consider the message board example from Chapter 8. To maintain an accurate count
of every message in each conversation, we have to update the count each time a mes‐
sage is posted. To do this with strong consistency, the count and the message have to
be updated in the same transaction, which means they have to be in the same entity
group—and therefore every message in the thread has to be in the same entity group.
This might be acceptable for a count of messages per conversation, as it’s unlikely that
many users will be posting to the same conversation simultaneously, and even so, the
delay for resolving concurrency failures might not be noticed.

But what if we want a count of every message on the website? Putting every message
in a single entity group would be impractical, as it would effectively serialize all

348 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

updates to the entire site. We need a way to update the count reliably without keeping
everything in one entity group.

Transactional task enqueueing lets us update the count reliably without concern for
entity groups. To post a message, we use a transaction to create the message entity
and enqueue a task that will update the count. If the transaction fails, the task is not
enqueued, so the count remains accurate. The task is performed outside of the trans‐
action, so the count does not need to be in the same entity group as the message, but
transactional enqueueing and task retries ensure that the count is updated, but only
under the proper circumstances.

Of course, this comes with a trade-off: it must be acceptable for the count to be inac‐
curate between the time the message entity is created and the time the count is upda‐
ted. In other words, we must trade strong consistency for eventual consistency.
Transactional task enqueueing gives us a simple way to implement eventually consis‐
tent global transactions.

You might think that eventual consistency is suitable for the global message count,
because who cares if the message count is accurate? But eventual consistency is useful
for important data as well. Say the user Alicandria posts a quest with a bounty of
10,000 gold, and a guild of 20 players completes the quest, claiming the bounty.
Because any player can trade gold with any other player, it is impractical to put all
players in the same entity group. A typical person-to-person exchange can use a
cross-group transaction, but this can only involve up to five entity groups. So to dis‐
tribute the bounty, we use transactional task enqueueing: the app deducts 10,000 gold
pieces from Alicandria’s inventory, then enqueues a task to give 500 gold pieces to
each member of the guild, all in a transaction. We use task names and memcache
locks to ensure the system doesn’t accidentally create new gold pieces if it retries the
task. Also, because the guild might get angry if they don’t get their money quickly, we
configure the gold transfer queue to execute at a fast rate and with a large token
bucket.

You can enqueue up to five tasks transactionally. In a typical case, it’s sufficient to
start a master task within the transaction, then trigger additional tasks as needed, and
let the queue-retry mechanism drive the completion of the work.

Only the task enqueuing action joins the datastore transaction. The
task itself is executed outside of the transaction, either in its own
request handler (push queues) or elsewhere (pull queues). Indeed,
by definition, the task is not enqueued until the transaction is com‐
mitted, so the task itself has no way to contribute further actions to
the transaction.

Transactional Task Enqueueing | 349

www.it-ebooks.info

http://www.it-ebooks.info/

The API for transactional task enqueuing is simple, and typically just means calling
the task queue API during an active transaction.

Recall from Chapter 8 that we perform a transaction in Python and ndb by calling a
function that has the decorator @ndb.transactional. Every datastore call made
between the start and end of the function participates in a single transaction, unless
the call opts out of the current transaction (by joining or creating another transac‐
tion).

The add() function, the add() convenience method of a Task, and the add() method
of a Queue all take an optional transactional=True argument. If provided, the task
will be enqueued as part of the current transaction. If there is no current transaction,
it raises a taskqueue.BadTransactionStateError. If the argument is not provided
(or its value is False), the task is enqueued immediately, regardless of whether the
transaction commits or aborts.

Here’s an example of transferring gold from one player to many other players in a sin‐
gle transaction:

from google.appengine.api import taskqueue
from google.appengine.ext import ndb

@ndb.transactional
def pay_quest_bounty(quest_master_key, guild_member_keys, amount):
 quest_master = quest_master_key.get()
 assert quest_master is not None

 quest_master.gold -= amount
 quest_master.put()
 taskqueue.add(url='/actions/payment/bounty',
 params={'user_key': guild_member_keys, # repeated element
 'total_amount': str(amount)},
 transactional=True)

The deduction and the task enqueue occur in the same transaction, so there’s no risk
of the deduction happening without enqueueing the task (gold disappears), nor is
there a risk of the task getting enqueued without the deduction succeeding (gold is
created). Assuming the bounty task is implemented correctly (and properly handles
edge cases like a guild member’s account being deleted), the transaction will complete
with eventual consistency.

Task Chaining
A single task performed by a push queue can run for up to 10 minutes. There’s a lot
you can get done in 10 minutes, but the fact that there’s a limit at all raises a red flag: a
single task does not scale. If a job uses a single task and the amount of work it has to

350 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

do scales with a growing factor of your app, the moment the amount of work exceeds
10 minutes, the task breaks.

One option is to use a master task, a task whose job is to figure out what work needs
to be done, and then create an arbitrary number of tasks to do fixed-size units of the
work. For example, the master task could fetch a feed URL from a remote host, and
then create a task for each entry in the feed to process it. This goes a long way to
doing more work within the 10-minute limit, and is useful to parallelize the units of
work to complete the total job more quickly. But it’s still a fixed capacity, limited to
the number of child tasks the master task can create in 10 minutes.

For jobs of arbitrary size, another useful pattern is a task chain. The idea is straight‐
forward: complete the job with an arbitrary number of tasks, where each task is
responsible for creating the subsequent task, in addition to doing a fixed amount of
work. Each task must be capable of performing its own amount of work in a fixed
amount of time, as well as determining what the next unit of work ought to be.

Task chains are especially useful when combined with datastore query cursors, which
meet these exact requirements. A task that ought to update every entity of a kind
(possibly those that match other query criteria) can use the following steps:

1. Start a query for entities of the kind. If the task payload includes a cursor, set the
query to start at the cursor location.

2. Read and process a fixed number of entities from the query results.
3. Take the cursor after the last query result. If there are any results after the cursor,

create a new task with the new cursor as its payload.
4. Return a success code.

This produces the simple task chain shown in Figure 16-2. Each new task starts just
as the previous task finishes.

Figure 16-2. A simple task chain, where each task does a fixed amount of work, then
creates the next task

Task Chaining | 351

www.it-ebooks.info

http://www.it-ebooks.info/

If the work for the next task can be determined before performing the work for the
current task, and the next task does not depend upon the completion of the current
task, we can improve the performance of this job by creating the next task before we
begin the work. In the case of iterating over every result of a query, we can get the
next cursor immediately after performing the query:

1. Start a query for entities of the kind. If the task payload includes a cursor, set the
query to start at the cursor location.

2. Read a fixed number of entities from the query results.
3. Take the cursor after the last query result. If there are any results after the cursor,

create a new task with the new cursor as its payload.
4. Process the results from the query.
5. Return a success code.

This technique compresses the timeline so the work of each task is performed con‐
currently. App Engine will perform the tasks up to the capacity of the queue, and will
utilize instances based on your app’s performance settings, so you can create tasks
aggressively and throttle their execution to your taste. Figure 16-3 shows the timeline
of the compressed behavior.

Figure 16-3. An improved task chain, where each task creates the next task before doing
its own work

The last step of each task is to return a success code. This tells the push queue that the
task was successful and can be deleted from the queue. If the task does not return a
success code, such as due to a transient service error throwing an uncaught exception,
the push queue puts the task back on the queue and tries it again. As we’ve described
it so far, this is a problem for our task chain, because retrying one task will create
another task for the next unit of work, and so on down the rest of the chain. We
might end up with something like Figure 16-4, with a ton—potentially an exponential
amount—of wasted work.

352 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 16-4. A transient error in a naive task chain explodes into many chains of wasted
work, as links in the chain are retried

You might think the solution is to go back to the previous version of the task, where
the work is performed before the next task is enqueued. This would reduce the likeli‐
hood that a transient service error occurs after the next link in the chain is created,
but this doesn’t eliminate the possibility. Even with no lines of code following the task
enqueue operation in the handler, a failure on the app instance might still cause an
error condition, and a fork in the chain.

The real solution is to use task names. As we saw earlier, every task has a unique
name, either specified by the app or by the system. A given task name can only be
used once (within a reasonably long period of time, on the order of days). When a
named task finishes, it leaves behind a “tombstone” record to prevent the name from
being reused right away.

A task name can be any string that identifies the next unit of work, and that the cur‐
rent task can calculate. In the datastore traversal example, we already have such a
value: the query cursor. We can prepend a nonce value that identifies the job, to dis‐
tinguish the query cursor for this job from a similar cursor of a job we might run
later.

Our resilient task routine is as follows:

1. Start a query for entities of the kind. If the task payload includes a cursor, set the
query to start at the cursor location.

Task Chaining | 353

www.it-ebooks.info

http://www.it-ebooks.info/

2. Read a fixed number of entities from the query results.
3. Take the cursor after the last query result. If there are any results after the cursor,

prepare to create a new task. If the task payload contains a nonce value for the
job, use it, otherwise generate a new one. Generate the next task name based on
the nonce value and the new query cursor. Create a new task with the task name,
and the nonce value and the new cursor as its payload.

4. Process the results from the query.
5. Return a success code.

Transient errors no longer bother us, resulting in a pattern like Figure 16-5. Tasks
that fail due to transient errors are retried and may cause their units of work to
complete later, but they no longer cause the rest of the chain to be re-created for each
failure.

Figure 16-5. Named tasks prevent an exploding chain during a transient error

We close this discussion of task chains with an example implementation:

import datetime
import re
import time
import urllib
import webapp2

from google.appengine.api import taskqueue
from google.appengine.ext import ndb

354 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

TASK_SIZE = 10

class Quest(ndb.Model):
 # ...
 end_timestamp = ndb.IntegerProperty()
 end_datetime = ndb.DateTimeProperty()

class UpgradeQuestEntitiesTaskHandler(webapp2.RequestHandler):
 def post(self):
 cursor_str = self.request.get('cursor', None)
 cursor = None
 if cursor_str:
 cursor = ndb.Cursor(urlsafe=cursor_str)
 query = Quest.query(start_cursor=cursor)

 (results, new_cursor, more) = query.fetch_page(TASK_SIZE)

 if more:
 job_id = self.request.get('job_id')
 task_name = job_id + '_' + new_cursor
 task_name = re.sub('[^a-zA-Z0-9_-]', '_', task_name)
 taskqueue.add(
 name=task_name,
 url='/admin/jobs/upgradequests/task',
 params={
 'job_id': job_id,
 'cursor': new_cursor})

 # Do the work.
 for quest in results:
 # Upgrade end_timestamp to end_datetime.
 quest.end_datetime = datetime.fromtimestamp(quest.end_timestamp)
 ndb.put_multi(results)

class StartUpgradeQuestEntitiesJob(webapp2.RequestHandler):
 def get(self):
 started_job_id = self.request.get('job_id', None)
 if started_job_id is not None:
 self.response.out.write(
 '<p>Job started: %s</p>' % started_job_id)
 self.response.out.write("""
<form action="/admin/jobs/upgradequests/start" method="POST">
 <input type="submit" value="Start New Upgrade Quest Entities Job" />
</form>
""")

 def post(self):
 job_id = ('UpgradeQuestEntities_%s' % int(time.time()))
 taskqueue.add(
 name=job_id,
 url='/admin/jobs/upgradequests/task',
 params={'job_id': job_id})

Task Chaining | 355

www.it-ebooks.info

http://www.it-ebooks.info/

 self.redirect('/admin/jobs/upgradequests/start?'
 + urllib.urlencode({'job_id': job_id}))

application = webapp2.WSGIApplication([
 ('/admin/jobs/upgradequests/task', UpgradeQuestEntitiesTaskHandler),
 ('/admin/jobs/upgradequests/start', StartUpgradeQuestEntitiesJob)],
 debug=True)

Task Queue Administration
The Cloud Console provides a great deal of information about the current status of
your task queues and their contents. The Task Queues panel lists all the queues you
have configured, with their rate configurations and current running status. You can
click on any queue to get more information about individual tasks, such as their call‐
ing parameters and how many times they have been retried. You can also delete tasks
or force tasks to run, pause and restart the queue, or purge all tasks.

The features of this panel are intuitive, so we’ll just add one comment on a common
use of the panel: finding and deleting stuck tasks. If a queue has a task that is failing
and being retried repeatedly, the Oldest Task column may have a suspiciously old
date. Select the queue, then browse for a task with a large number in the Retries col‐
umn. You can trace this back to logs from an individual attempt by copying the URL
from the Method/URL column, then going to the Logs panel to do a search for that
path. You may need to force a run of the task by clicking the Run Now button to get a
recent entry to show up in the logs.

How you fix the problem depends on how important the data in the task record is. If
the task is failing because of an error in the code that can be fixed, you can leave the
task in the queue, fix the bug in the code, and then deploy new code to the target ver‐
sion of the task. When the task is retried, it’ll use the new code, and proceed to com‐
pletion. If the task is failing because the task record is incompatible with a recent
change to the code, you can try to rescue the task record with a code change, or just
delete the task record. It’s often easier to delete old task records and re-create the
activity they represent than to figure out how to usher them to completion.

Deferring Work
The task queue library includes a handy utility that makes it easy to throw work into
a task without writing a custom task handler. The utility uses a prepackaged general-
purpose task handler to process deferred work.

To defer work, you create a Python function or other callable object that performs the
work to be executed outside of the current request handler, then pass that callable
object to the defer() function from the google.appengine.ext.deferred package.

356 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

The defer() function takes the object to call within the task and arguments to pass to
the callable object.

To use this feature, you must set up the deferred work task handler. This is a built-in
for app.yaml:

builtins:
- deferred: on

Here’s a simple example that spans two Python modules, one containing the deferred
function, and one containing the request handler that defers it. First, here’s the func‐
tion, to appear in a module named invitation.py:

from google.appengine.api import mail
import logging

_INVITATION_MESSAGE_BODY = '''
You have been invited to join our community...
'''

def send_invitation(recipient):
 mail.send_mail('support@example.com',
 recipient,
 'You\'re invited!',
 _INVITATION_MESSAGE_BODY)
 logging.info('Sent invitation to %s' % recipient)

And here’s the request handler script:

from google.appengine.ext import webapp2
from google.appengine.ext import deferred
import invitation

class SendInvitationHandler(webapp2.RequestHandler):
 def get(self):
 # recipient = ...
 deferred.defer(invitation.send_invitation, recipient)

 # ...

application = webapp2.WSGIApplication([
 ('/sendinvite', SendInvitationHandler),
], debug=True)

The defer() function enqueues a task on the default queue that calls the given calla‐
ble object with the given arguments. The arguments are serialized and deserialized
using Python’s pickle module; all argument values must be pickle-able.

Most Python callable objects can be used with defer(), including functions and
classes defined at the top level of a module, methods of objects, class methods, instan‐
ces of classes that implement __call__(), and built-in functions and methods.
defer() does not work with lambda functions, nested functions, nested classes, or

Deferring Work | 357

www.it-ebooks.info

http://www.it-ebooks.info/

instances of nested classes. The task handler must be able to access the callable object
by name, possibly via a serializable object, because it does not preserve the scope of
the call to defer().

You also can’t use a function or class in the same module as the request handler class
from which you call defer(). This is because pickle believes the module of the
request handler class to be __main__ while it is running, and so it doesn’t save the
correct package name. This is why the previous example keeps the deferred function
in a separate module.

You can control the parameters of the task, such as the delay, by passing additional
arguments to defer(). These are the same arguments you would pass to Task(), but
with the argument names prepended with an underscore so they are not confused
with arguments for the callable:

deferred.defer(invitation.send_invitation,
 'juliet@example.com',
 _countdown=86400)

To call the callable, the task handler determines the module location of the callable
from the description saved by the defer() function, imports the required module, re-
creates any required objects from their serialized forms, then calls the callable. If the
module containing the callable imports other modules, those imports will occur dur‐
ing the task. If the deferred callable requires any additional setup, such as changes to
the module import path, make sure this happens in the callable’s module, or within
the callable itself.

The task handler determines the success or failure of the task based on exceptions
raised by the callable. If the callable raises a special exception called
deferred.PermanentTaskFailure, the task handler logs the error, but returns a suc‐
cess code to the task queue so the task is not retried. If the callable raises any other
exception, the exception is propagated to the Python runtime and the handler returns
an error code, which causes the task queue to retry the task. If the callable does not
raise an exception, the task is considered successful.

The deferred library is careful to raise deferred.PermanentTaskFailure for errors
it knows will prevent the task from ever succeeding. Such errors log messages, then
return success to flush the task from the queue.

Scheduled Tasks
Applications do work in response to external stimuli: user requests, incoming email
and XMPP messages, HTTP requests sent by a script on your computer. And while
task queues can be used to trigger events across a period of time, a task must be
enqueued by application code before anything happens.

358 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

Sometimes you want an application to do something “on its own.” For instance, an
app may need to send nightly email reports of the day’s activity, or fetch news head‐
lines from a news service. For this purpose, App Engine lets you specify a schedule of
tasks to perform on a regular basis. In the App Engine API, scheduled tasks are also
known as “cron jobs,” named after a similar feature in the Unix operating system.

A scheduled task consists of a URL path to call and a description of the recurring
times of the day, week, or month at which to call it. It can also include a textual
description of the task, which is displayed in the Cloud Console and other reports of
the schedule.

To execute a scheduled task, App Engine calls the URL path by using an empty GET
request. A scheduled task cannot be configured with parameters, headers, or a differ‐
ent HTTP method. If you need something more complicated, you can do it in the
code for the request handler mapped to the scheduled task’s URL path.

As with task queue handlers, you can secure the URL path by restricting it to applica‐
tion developers in the frontend configuration. The system can call such URL paths to
execute scheduled tasks.

The HTTP request includes the header X-AppEngine-Cron: true to differentiate it
from other App Engine–initiated requests. Only App Engine can set this header. If an
external request tries to set it, App Engine removes it before it reaches your app. You
can use the header to protect against outside requests triggering the job. Scheduled
task requests are also treated like requests from an administrator user (similarly to
push queue tasks), so you can guard task URLs by using a login requirement in
app.yaml.

Just like tasks in push queues, scheduled tasks have a request deadline of 10 minutes,
so you can do a significant amount of computation and service calls in a single
request handler. Depending on how quickly the task needs to be completed, you may
still wish to break work into small pieces and use task queues to execute them on
multiple instances in parallel.

Unlike push queues, scheduled tasks that fail are not retried. If a failed schedule task
should be retried immediately, the scheduled task should put the work onto a push
queue.

The development server does not execute scheduled tasks automatically. If you need
to test a scheduled task, you can visit the task URL path while signed in as an admin‐
istrator. The development server console includes a Cron Jobs section that lists the
URL paths in the configuration file for easy access.

If you have enabled billing for your application, your app can have up to 100 task
schedules. At the free billing tier, an app can have up to 20 task schedules.

Scheduled Tasks | 359

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Scheduled Tasks
The schedule is a configuration file named cron.yaml. It contains a value named cron,
which is a list of task schedules. Each task schedule has a description, a url, and a
schedule. You can also specify a timezone for the schedule:

cron:
- description: Send nightly reports.
 url: /cron/reports
 schedule: every day 23:59
 timezone: America/Los_Angeles
- description: Refresh news.
 url: /cron/getnews
 schedule: every 1 hours

As with other service configuration files, the scheduled task configuration file applies
to the entire app, and is uploaded along with the application. You can also upload it
separately:

appcfg.py update_cron app-dir

You can validate your task schedule and get a human-readable description of it by
using appcfg.py cron_info app-dir. The report includes the exact days and times
of the next few runs, so you can make sure that the schedule is what you want.

These are the possible fields for each scheduled task:

description

A textual description of the scheduled task, displayed in the Cloud Console

url

The URL path of the request handler to call for this task

schedule

The schedule on which to execute this task

timezone

The time zone for the schedule, as a standard “zoneinfo” time zone descriptor
(such as America/Los_Angeles); if omitted, the schedule times are interpreted as
UTC time

target

The ID of the app version to use for the task; if omitted, App Engine calls the
version that is the default at the time the task executes

360 | Chapter 16: Task Queues and Scheduled Tasks

360

www.it-ebooks.info

http://www.it-ebooks.info/

If you choose a time zone identifier where Daylight Saving Time
(DST) is used and have a task scheduled during the DST hour, your
task will be skipped when DST advances forward an hour, and run
twice when DST retreats back an hour. Unless this is desired, pick a
time zone that does not use DST, or do not schedule tasks during
the DST hour. (The default time zone UTC does not use DST.)

Specifying Schedules
The value for the schedule element uses a simplified English-like format for describ‐
ing the recurrence of the task. It accepts simple recurrences, such as:

every 30 minutes
every 3 hours

The minimum interval is every 1 minutes. The parser’s English isn’t that good: it
doesn’t understand every 1 minute or every minute. It does understand every day,
as an exception.

The interval every day accepts an optional time of day, as a 24-hour hh:mm time. This
runs every day at 11:59 p.m.:

every day 23:59

You can have a task recur weekly using the name of a weekday, as in every tuesday,
and can also include a time: every tuesday 23:59. In another English parsing foible,
day names must use all lowercase letters. You can abbreviate day names using just the
first three letters, such as every tue 23:59.

You can have a task recur monthly or on several days of a given month by specifying a
comma-delimited list of ordinals (such as 2nd, or first,third) and a comma-
delimited list of weekday names (monday,wednesday,friday or sat,sun). You can
also include a time of day, as earlier. This occurs on the second and fourth Sunday of
each month:

2nd,4th sunday

You can have a task recur yearly by including the word “of ” and a comma-delimited
list of lowercase month names (january,july, or oct,nov,dec). This schedule exe‐
cutes at 6 p.m. on six specific days of the year:

3rd,4th tue,wed,thu of march 18:00

You can specify recurrences to occur between two times of the day. This executes the
task every 15 minutes between 3 a.m. and 5 a.m. every day:

every 15 mins from 03:00 to 05:00

Scheduled Tasks | 361

www.it-ebooks.info

http://www.it-ebooks.info/

By default, when a schedule uses a time interval without an explicit start time, App
Engine will wait for the previous task to complete before restarting the timer. If a task
runs every 15 minutes and the task takes 5 minutes to complete, each task’s start time
begins 20 minutes apart. If you’d prefer the next task to start at a specific interval
from the previous start time regardless of the time taken to complete the previous
task (or whether the previous task has finished), use the synchronized keyword:

every 15 mins synchronized

362 | Chapter 16: Task Queues and Scheduled Tasks

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17

Optimizing Service Calls

Handlers for user-facing requests spend most of their time calling App Engine serv‐
ices, such as the datastore or memcache. As such, making user-facing requests fast
requires understanding how your application calls services, and applying techniques
to optimize the heaviest uses of calls.

We’ve seen three optimization techniques already, but they’re worth reviewing:

• Store heavily used results of datastore queries, URL fetches, and large computa‐
tions in memcache. This exchanges expensive operations (even simple datastore
gets) for fast calls to the memcache in the vast majority of cases, at the expense of
a potentially stale view of the data in rare cases.

• Defer work outside of the user-facing request by using task queues. When the
work to prepare results for users occurs outside of the user-facing request, it’s
easy to see how user-facing requests are dominated by requests to the datastore
or memcache.

• Use the datastore and memcache batch APIs when operating on many independ‐
ent elements (when batch size limitations are not an issue). Every call to the ser‐
vice has remote procedure call overhead, so combining calls into batches saves
overhead. It also reduces clock time spent on the call, because the services can
perform the operations on the elements in parallel.

Another important optimization technique is to call services asynchronously. When
you call a service asynchronously, the call returns immediately. Your request handler
code can continue executing while the service does the requested work. When your
code needs the result, it calls a method that waits for the service call to finish (if it
hasn’t finished already), and then returns the result. With asynchronous calls, you can
get services and your app code doing multiple things at the same time, so the user
response is ready sooner.

363

www.it-ebooks.info

http://www.it-ebooks.info/

App Engine supports asynchronous service APIs to the datastore, memcache, and
URL Fetch services. Support for asynchronous calls is also currently supported in a
few other places.

All of these optimization techniques require understanding your application’s needs
and recognizing where the benefits of the technique justify the added code complex‐
ity. App Engine includes a tool called AppStats to help you understand how your app
calls services and where you may be able to optimize the call patterns. AppStats hooks
into your application logic to collect timing data for service calls, and reports this data
visually in a web-based interface.

In this chapter, we demonstrate how to call services using the asynchronous APIs. We
also walk through the process of setting up and using AppStats, and see how it can
help us understand our application’s performance.

Calling Services Asynchronously
Consider the following call to the URL Fetch service, shown here in Python:

from google.appengine.api import urlfetch

...
 response = urlfetch.fetch('http://store.example.com/products/molasses')
 process_data(response)

When execution of the request handler reaches this line, a sequence of events takes
place. The app issues a remote procedure call to the URL Fetch service. The service
prepares the request, then opens a connection with the remote host and sends it. The
remote host does whatever it needs to do to prepare a response, invoking handler
logic, making local connections to database servers, performing queries, and format‐
ting results. The response travels back over the network, and the URL Fetch service
concludes its business and returns the response data to the app. Execution of the
request handler continues with the next line.

From the point when it makes the service call to the point it receives the response
data, the app is idle. If the app has multithreading enabled in its configuration, the
handler’s instance can use the spare CPU to handle other requests. But no further
progress is made on this request handler.

In the preceding case, that’s the best the request handler can do: it needs the response
in order to proceed to the next line of execution. But consider this amended example:

 ingred1 = urlfetch.fetch('http://store.example.com/products/molasses')
 ingred2 = urlfetch.fetch('http://store.example.com/products/sugar')
 ingred3 = urlfetch.fetch('http://store.example.com/products/flour')

 combine(ingred1, ingred2, ingred3)

364 | Chapter 17: Optimizing Service Calls

www.it-ebooks.info

http://www.it-ebooks.info/

Here, the request handler issues the first request, then waits for the first response
before issuing the second request. It waits again for the second response before issu‐
ing the third. The total running time of just these three lines is equal to the sum of the
execution times of each call, and during that time the request handler is doing noth‐
ing but waiting. Most importantly, the code does not need the data in the first
response in order to issue the second or third request. In fact, it doesn’t need any of
the responses until the fourth line.

These calls to the URL Fetch service are synchronous: each call waits for the requested
action to be complete before proceeding. With synchronous calls, your code has com‐
plete results before it proceeds, which is sometimes necessary, but sometimes not.
Our second example would benefit from service calls that are asynchronous, where
the handler can do other things while the service prepares its results.

When your app makes an asynchronous service call, the call returns immediately. Its
return value is not the result of the call (which is still in progress). Instead, the call
returns a special kind of object called a future, which represents the call and provides
access to the results when you need them later. A future is an I.O.U., a promise to
return the result at a later time. Your app is free to perform additional work while the
service does its job. When the app needs the promised result, it calls a method on the
future. This call either returns the result if it’s ready, or waits for the result.

A synchronous call can be thought of as an asynchronous call that waits on the future
immediately. In fact, this is precisely how the App Engine synchronous APIs are
implemented.

Here is the asynchronous version of the second example:

 ingred1_rpc = urlfetch.make_fetch_call(
 urlfetch.create_rpc(), 'http://store.example.com/products/molasses')
 ingred2_rpc = urlfetch.make_fetch_call(
 urlfetch.create_rpc(), 'http://store.example.com/products/sugar')
 ingred3_rpc = urlfetch.make_fetch_call(
 urlfetch.create_rpc(), 'http://store.example.com/products/flour')

 combine(
 ingred1_rpc.get_result(),
 ingred2_rpc.get_result(),
 ingred3_rpc.get_result())

The make_fetch_call() function calls each issue their request to the service, then
return immediately. The requests execute in parallel. The total clock time of this code,
including the get_result() calls, is equal to the longest of the three service calls, not
the sum. This is a potentially dramatic speed increase for our code.

Figure 17-1 illustrates the difference between a synchronous and an asynchronous
call, using the Python URL Fetch API as an example.

Calling Services Asynchronously | 365

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 17-1. Sequence diagrams of a synchronous URL fetch and an asynchronous URL
fetch

The preceding example was trivial: we could determine an obvious optimization just
from looking at the code, and the change was not complicated. In a real app, reorder‐
ing your code and data dependencies to best exploit asynchronous calls can add com‐
plexity. Like most optimization, it’s an investment to gain performance.

The service APIs have their own particular ways of making asynchronous calls. Let’s
take a look at what’s available.

Asynchronous Calls in Python
The Python runtime environment has documented asynchronous calls for the data‐
store, memcache, and URL Fetch services, as well as the App Engine Blobstore. The
calling syntax varies slightly between the URL Fetch service and the other services,
but the general idea is the same.

All asynchronous calls in Python return an RPC (remote procedure call) object. You
can call the get_result() method of this object to wait for results (if necessary), and
either raise exceptions to report service errors, or return the result.

366 | Chapter 17: Optimizing Service Calls

www.it-ebooks.info

http://www.it-ebooks.info/

More specifically, the RPC object advances through four states during its lifetime:

1. Created: the object has been created, but has not been associated with a call
2. In progress: the service call has been initiated and associated with the object
3. Ready: the call has completed, either with results or with an error
4. Checked: the status of the call has been reported to the application, such as by

having raised an exception to represent an error

When you call a service’s asynchronous function, the service returns an RPC object in
the “in progress” state. Calling the RPC object’s get_result() method advances it
through the “ready” state to the “checked” state. Calling get_result() on an RPC
object in the “checked” state will return the result (if any) again, but will not reraise
exceptions.

You can advance the RPC object through the last two states manually by using meth‐
ods. The wait() method waits for the fetch to finish (“in progress” to “ready”). The
check_result() method verifies and reports the final status (“ready” to “checked”).
Calling any of these methods advances the object to the appropriate state, performing
the tasks along the way. If the starting state for the method has already passed, such as
calling wait() when in the “ready” state, the method does nothing.

Figure 17-2 illustrates the RPC object states and transitions.

Figure 17-2. The RPC object states and transitions, using URL Fetch as an example

Datastore

The Python datastore API in the google.appengine.ext.ndb package has asynchro‐
nous equivalents for the major functions. The arguments are the same. Instead of
returning a result, the asynchronous functions return an RPC object, whose
get_result() method returns the expected result. Table 17-1 lists each function and
its asynchronous equivalent.

Calling Services Asynchronously | 367

www.it-ebooks.info

http://www.it-ebooks.info/

Table 17-1. Python functions in ndb and their asynchronous
equivalents

Synchronous Asynchronous

key.get() key.get_async()

key.delete() key.delete_async()

query.count() query.count_async()

query.fetch() query.fetch_async()

query.fetch_page() query.fetch_page_async()

query.get() query.get_async()

query.map() query.map_async()

ndb.Model.allocate_ids() ndb.Model.allocate_ids_async()

ndb.Model.get_by_id() ndb.Model.get_by_id_async()

ndb.Model.get_or_insert() ndb.Model.get_or_insert_async()

model.put() model.put_async()

ndb.delete_multi() ndb.delete_multi_async()

ndb.get_multi() ndb.get_multi_async()

ndb.put_multi() ndb.put_multi_async()

ndb.transaction() ndb.transaction_async()

A brief example:

from google.appengine.ext import ndb

...
 k1 = ndb.Key('MyKind', 1)
 k2 = ndb.Key('MyKind', 2)
 k3 = ndb.Key('MyKind', 3)
 keys = [k1, k2, k3]

 get_rpcs = {}
 for key in keys:
 get_rpcs[key] = key.get_async()
 # ...

368 | Chapter 17: Optimizing Service Calls

www.it-ebooks.info

http://www.it-ebooks.info/

 # ...
 v1 = get_rpcs[k1].get_result()

A transaction function can contain asynchronous function calls. When the transac‐
tion function exits, any asynchronous calls made within the function that are not in
the “checked” state are resolved before the transaction commits.

Queries can also be performed asynchronously. Normally, a Query object doesn’t
make a service call until results are fetched. If you use the object as an iterable, the
first few results are fetched immediately, and subsequent results are prefetched asyn‐
chronously, as needed. You can start the asynchronous prefetching process early by
calling the iter() method. iter() returns an iterable of results just like the object.
The only difference is the asynchronous prefetching process is started before the first
use of the iterable:

from google.appengine.ext import ndb

class Player(ndb.Expando):
 pass

...
 # Prepare the query (no service calls).
 query = Player.query().order('-score')

 # Call the service asynchronously to start prefetching results.
 results_iter = query.iter()

 # ...

 for player in results_iter:
 # ...

In contrast, the fetch() method initiates synchronous service calls to perform the
query and retrieve the requested number of result entities.

Memcache

The Python memcache API includes asynchronous versions of a set of the Client
methods. All of the memcache’s functionality is available with asynchronous calls,
although only a subset of the calling syntax is supported. In particular, only methods
of the Client class have asynchronous versions, not the package functions. For most
methods, only the batch versions have asynchronous equivalents, but of course you
can always call a batch method with a single element. Table 17-2 lists the methods.

Calling Services Asynchronously | 369

www.it-ebooks.info

http://www.it-ebooks.info/

1 See the book’s website for a free bonus chapter about the Blobstore service.

Table 17-2. Python methods of api.memcache.Client and
their asynchronous equivalents

Synchronous Asynchronous

client.get_multi() client.get_multi_async()

client.set_multi() client.set_multi_async()

client.add_multi() client.add_multi_async()

client.replace_multi() client.replace_multi_async()

client.cas_multi() client.cas_multi_async()

client.incr() client.incr_async()

client.decr() client.decr_async()

client.offset_multi() client.offset_multi_async()

client.flush_all() client.flush_all_async()

client.get_stats() client.get_stats_async()

An example:

from google.appengine.api import memcache

...
 client = memcache.Client()

 add_rpc = client.add_multi_async(mapping)
 # ...

 if add_rpc.get_result().get(k, None) is None:
 # ...

Blobstore
The Python Blobstore API has asynchronous versions of the major functions.
Table 17-3 lists the functions.1

370 | Chapter 17: Optimizing Service Calls

www.it-ebooks.info

http://www.dansanderson.com/appengine
http://www.it-ebooks.info/

Table 17-3. Python functions in ext.blobstore and their asynchronous
equivalents

Synchronous Asynchronous

blobstore.create_upload_url() blobstore.create_upload_url_async()

blobstore.delete() blobstore.delete_async()

blobstore.fetch_data() blobstore.fetch_data_async()

blobstore.create_gs_key() blobstore.create_gs_key_async()

The BlobInfo methods do no have asynchronous equivalents. To delete a Blobstore
value asynchronously, use the blobstore function.

In this example, we call the Blobstore service asynchronously to create an upload
URL, then pass the RPC object to the template engine rendering the page. This allows
us to finish other work and fire up the template engine while the service call is in pro‐
gress. The template itself blocks on the RPC object to get the result when it is needed
at the last possible moment:

import jinja2
from google.appengine.ext import blobstore

template_env = jinja2.Environment(
 loader=jinja2.FileSystemLoader(os.getcwd()))

...
 template = template_env.get_template('form.html')
 context = {
 'upload_url_rpc': blobstore.create_upload_url_async('/formhandler'),
 'orig_data': load_orig_data(),
 }
 self.response.out.write(template.render(context))

The template calls the get_result() method of the RPC object to get the value it
needs:

<!-- ... -->

 <form action="{{ upload_url_rpc.get_result() }}" method="post">
 <!-- ... -->
 </form>

URL Fetch
The Python URL Fetch asynchronous API uses a slightly different syntax from
the others. The asynchronous equivalent of urlfetch.fetch(…) is
urlfetch.make_fetch_call(urlfetch.create_rpc(), …). Like the _async() meth‐

Calling Services Asynchronously | 371

www.it-ebooks.info

http://www.it-ebooks.info/

ods, it returns an RPC object. Unlike the others, you must create the RPC object first,
and pass it in as the first argument. The function updates the RPC object, then
returns it. The remaining arguments are equivalent to urlfetch.fetch().

This style of passing an RPC object to a service call predates the
_async-style methods in the other APIs. It appears inconsistently
throughout the Python service APIs, so you might notice some
other modules have it. The ext.blobstore module has a
create_rpc() method, and many methods accept an rpc keyword
argument. The api.memcache module also has a create_rpc()
method, although only the _async methods of the Client class
support it.

Asynchronous calling of the URL Fetch service is only available using the urlfetch
API. The Python standard library urllib2 always calls the service synchronously.

Using callbacks
To make the most of the parallel execution of asynchronous calls, a request handler
should initiate the call as soon as possible in the handler’s lifetime. This can be as
straightforward as calling asynchronous methods early in a routine, then calling the
get_results() method at the point in the routine where the results are needed. If
your handler uses multiple diverse components to perform tasks, and each compo‐
nent may require the results of asynchronous calls, you could have the main routine
ask each component to initiate its service calls, then allow the components to get their
own results as control reaches the appropriate points in the code.

The Python RPC object offers another way to organize the code that handles the
results of fetches: callbacks. A callback is a function associated with the RPC object
that is called at some point after the RPC is complete, when the app calls the wait(),
check_results(), or get_results() method. Specifically, the callback is invoked
when the object goes from the “in progress” state to the “ready” state. Because the
RPC never reverts states, the callback is only called once, even if the app accesses
results multiple times.

You can set a callback by setting the callback attribute of the RPC object. (Be sure to
do this before calling wait(), check_results(), or get_results().)

 rpc = ndb_key.get_async()
 rpc.callback = some_func

 # ...

 # Wait for the call to finish, then calls some_func.
 rpc.wait()

372 | Chapter 17: Optimizing Service Calls

www.it-ebooks.info

http://www.it-ebooks.info/

In the URL Fetch API, and other APIs that let you create an RPC
object explicitly, you can also pass the callback function value as
the callback keyword argument to create_rpc().

The callback function is called without arguments. This is odd, because a common
use for a callback function is to process the results of the service call, so the function
needs access to the RPC object. There are several ways to give the callback function
access to the object.

One way is to use a bound method, a feature of Python that lets you refer to a method
of an instance of a class as a callable object. Define a class with a method that pro‐
cesses the results of the call, using an RPC object stored as a member of the class.
Create an instance of the class, then create the RPC object, assigning the bound
method as the callback. Example 17-1 demonstrates this technique.

Example 17-1. Using an object method as a callback to access the RPC object

from google.appengine.api import urlfetch

...
class CatalogUpdater(object):
 def prepare_urlfetch_rpc(self):
 self.rpc = urlfetch.make_fetch_call(
 urlfetch.create_rpc(),
 'http://api.example.com/catalog_feed')
 self.rpc.callback = self.process_results
 return self.rpc

 def process_results(self):
 try:
 results = self.rpc.get_result()
 # Process results.content...

 except urlfetch.Error, e:
 # Handle urlfetch errors...

class MainHandler(webapp.RequestHandler):
 def get(self):
 rpcs = []

 catalog_updater = CatalogUpdater(self.response)
 rpcs.append(catalog_updater.prepare_urlfetch_rpc())

 # ...

 for rpc in rpcs:
 rpc.wait()

Calling Services Asynchronously | 373

www.it-ebooks.info

http://www.it-ebooks.info/

Another way to give the callback access to the RPC object is to use a nested function
(sometimes called a closure). If the callback function is defined in the same scope as a
variable whose value is the RPC object, the function can access the variable when it is
called.

Example 17-2 demonstrates the use of a nested function as a callback. The
create_callback() function creates a function object, a lambda expression, that calls
another function with the RPC object as an argument. This function object is
assigned to the callback property of the RPC object.

Example 17-2. Using a nested function as a callback to access the RPC object

from google.appengine.api import urlfetch

def process_results(rpc):
 try:
 results = self.rpc.get_result()
 # Process results.content...

 except urlfetch.Error, e:
 # Handle urlfetch errors...

def create_callback(rpc):
 # Use a function to define the scope for the lambda.
 return lambda: process_results(rpc)

...
 rpc = urlfetch.create_rpc()
 rpc.callback = create_callback(rpc)
 urlfetch.make_fetch_call(rpc, 'http://api.example.com/catalog_feed')

 # ...

 rpc.wait()

If you’ve used other programming languages that support function objects, the
create_callback() function may seem unnecessary. Why not create the function
object directly where it is used? In Python, the scope of an inner function is the outer
function, including its variables. If the outer function redefines the variable contain‐
ing the RPC object (rpc), when the inner function is called it will use that value. By
wrapping the creation of the inner function in a dedicated outer function, the value of
rpc in the scope of the callback is always set to the intended object.

Someone still needs to call the wait() method on the RPC object so the callback can
be called. But herein lies the value of callbacks: the component that calls wait() does
not have to know anything about what needs to be done with the results. The main
routine can query its subcomponents to prepare and return RPC objects, then later it

374 | Chapter 17: Optimizing Service Calls

www.it-ebooks.info

http://www.it-ebooks.info/

can call wait() on each of the objects. The callbacks assigned by the subcomponents
are called to process each result.

If you have multiple asynchronous service calls in progress simul‐
taneously, the callback for an RPC is invoked if the service call fin‐
ishes during any call to wait()—even if the wait() is for a
different RPC. Of course, the wait() doesn’t return until the fetch
for its own RPC object finishes and its callbacks are invoked.
A callback is only invoked once: if you call wait() for an RPC
whose callback has already been called, it does nothing and returns
immediately.
If your code makes multiple simultaneous asynchronous calls, be
sure not to rely on an RPC’s callback being called only during its
own wait().

Visualizing Calls with AppStats
AppStats is a tool to help you understand how your code calls services. After you
install the tool in your application, AppStats records timing data for requests, includ‐
ing when each service call started and ended relative to the request running time. You
use the AppStats Console to view this data as a timeline of the request activity.

Let’s take another look at our contrived URL Fetch example from earlier in this
chapter:

 ingred1 = urlfetch.fetch('http://store.example.com/products/molasses')
 ingred2 = urlfetch.fetch('http://store.example.com/products/sugar')
 ingred3 = urlfetch.fetch('http://store.example.com/products/flour')

 combine(ingred1, ingred2, ingred3)

Figure 17-3 is the AppStats timeline for this code. It’s clear from this graph how each
individual call contributes to the total running time. In particular, notice that the
Grand Total is as large as the RPC Total.

Visualizing Calls with AppStats | 375

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 17-3. The AppStats Console illustrating three synchronous calls to urlfetch.Fetch

Here’s the same example using asynchronous calls to the URL Fetch service:

 ingred1_rpc = urlfetch.make_fetch_call(
 urlfetch.create_rpc(), 'http://store.example.com/products/molasses')
 ingred2_rpc = urlfetch.make_fetch_call(
 urlfetch.create_rpc(), 'http://store.example.com/products/sugar')
 ingred3_rpc = urlfetch.make_fetch_call(
 urlfetch.create_rpc(), 'http://store.example.com/products/flour')

 combine(
 ingred1_rpc.get_result(),
 ingred2_rpc.get_result(),
 ingred3_rpc.get_result())

Figure 17-4 shows the new chart, and the difference is dramatic: the URL Fetch calls
occur simultaneously, and the Grand Total is not much larger than the longest of the
three fetches.

376 | Chapter 17: Optimizing Service Calls

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 17-4. The AppStats Console illustrating three overlapping asynchronous calls to
urlfetch.Fetch

AppStats has two parts: the event recorder and the AppStats Console. Both parts live
within your app, and are included in the runtime environment.

Once installed, you can use AppStats in both the development server and your live
app. Running in the development server can give you a good idea of the call patterns,
although naturally the timings will not match the live service.

The event recorder hooks into the serving infrastructure for your app to start record‐
ing at the beginning of each request, and store the results at the end. It records the
start and end times of the request handler, and the start and end times of each remote
procedure call (RPC) to the services. It also stores stack traces (and, for Python, local
variables) at each call site.

The recorder uses memcache for storage, and does not use the datastore. It stores two
values: a short record and a long record. The short record is used by the AppStats
Console to render a browsing interface for the long records. Only the most recent
1,000 records are retained. Of course, memcache values may be evicted more aggres‐
sively if your app uses memcache heavily. But in general, AppStats is able to show a
representative sample of recent requests.

The performance overhead of the recorder is minimal. For typical user-facing
requests, you can leave the recorder turned on for live traffic in a popular app. If nec‐
essary, you can limit the impact of the recorder by configuring it to only record a sub‐

Visualizing Calls with AppStats | 377

www.it-ebooks.info

http://www.it-ebooks.info/

set of traffic, or traffic to a subset of URLs. AppStats records and reports its own
overhead.

AppStats accrues its timing data in instance memory during the
request, and then stores the result in memcache at the end of the
request handler’s lifetime. This works well for user-facing requests,
even those that last many seconds. For non-user-facing task han‐
dlers that last many minutes and make many RPC calls, App
Engine may kill the task (and log a critical error) due to excess
memory consumption. AppStats can be useful for optimizing batch
jobs, but you may want to watch carefully for memory overruns,
and disable it for large task handlers when you’re not testing them
actively.

In the next few sections, we’ll walk through how to install the event recorder and the
Console. Then we’ll take a closer look at the AppStats Console.

Installing AppStats
AppStats for Python includes two versions of the event recorder, one specifically for
the Django web application framework, and another general-purpose WSGI recorder.

If you’re using Django, edit your app’s settings.py, and find MIDDLEWARE_CLASSES. Add
the AppStatsDjangoMiddleware class, with an entry like this:

MIDDLEWARE_CLASSES = (
 'google.appengine.ext.appstats.recording.AppStatsDjangoMiddleware',
 # ...
)

For all other Python applications, you install the WSGI middleware, using an appen‐
gine_config.py file. This file is used to configure parts of the App Engine libraries,
including AppStats. If you don’t have this file already, create it in your application
root directory, and add the following Python function:

def webapp_add_wsgi_middleware(app):
 from google.appengine.ext.appstats import recording
 app = recording.appstats_wsgi_middleware(app)
 return app

App Engine uses this middleware function for all WSGI applications, including those
running in the Python 2.7 runtime environment.

Regardless of which method you use to install the recorder, you can specify additional
configuration in the appengine_config.py file.

Three settings control which handlers get recorded. The first is a global variable
named appstats_FILTER_LIST that specifies patterns that match environment vari‐

378 | Chapter 17: Optimizing Service Calls

www.it-ebooks.info

http://www.it-ebooks.info/

ables. For example, to disable recording for request handlers on a particular URL
path:

appstats_FILTER_LIST = [
 {
 'PATH_INFO': '/batchjobs/.*',
 },
]

appstats_FILTER_LIST is a list of clauses. Each clause is a mapping of environment
variable names to regular expressions. If the environment variables for a given
request match all the regular expressions in a clause, then the request is recorded. Do
a Google search for “WSGI environment variables” for more information on the vari‐
ables you can match. Also note that the regular expression matches from the begin‐
ning of the environment variable (a “match”-style regular expression).

The appstats_RECORD_FRACTION configuration variable sets a percentage of requests
not already filtered by appstats_FILTER_LIST that should be recorded. The default is
1.0 (100%). To only record a random sampling of 20 percent of the requests:

appstats_RECORD_FRACTION = 0.2

If you need more control over how requests are selected for recording, you can
provide a function named appstats_should_record(). The function takes a map‐
ping of environment variables and returns True if the request should be recorded.
Note that defining this function overrides the appstats_FILTER_LIST and
appstats_RECORD_FRACTION behaviors, so if you want to retain these, you’ll need to
copy the logic that uses them into your function.

The appstats_normalize_path(path) configuration function takes the request path
and returns a normalized request path, so you can group related paths together in the
reports. It’s common for a single handler to handle all requests whose URL paths
match a pattern, such as /profile/13579, where 13579 is a record ID. With app
stats_normalize_path(), you can tell AppStats to treat all such URL paths as one,
like so:

def appstats_normalize_path(path):
 if path.startswith('/profile/'):
 return '/profile/X'
 return path

Other settings let you control how AppStats uses memcache space, such as the num‐
ber of retained events or how much stack trace data to retain. For a complete list of
AppStats Python configuration variables, see the sample_appengine_config.py file in
the SDK, in the google/appengine/ext/appstats/ directory.

Visualizing Calls with AppStats | 379

www.it-ebooks.info

http://www.it-ebooks.info/

The last step is to install the AppStats Console. Edit app.yaml, and enable the
appstats built-in:

builtins:
- appstats: on

The AppStats Console lives on the path /_ah/stats/ in your application. The Con‐
sole works in the development server as well as the live app, and is automatically
restricted to administrative accounts.

Using the AppStats Console
The AppStats Console is your window to your app’s service call behavior. To open the
Console, visit /_ah/stats/ in your app, or if you configured it, use the link you
added to the Cloud Console sidebar. AppStats works in your development server as
well as your live app.

Figure 17-5 shows an example of the AppStats Console. (A very small app is shown,
to limit the size of the example.)

Figure 17-5. The AppStats Console front page for a small app

The front page of the Console shows a summary of recent service calls. RPC Stats is a
summary of calls by service, with the most popular service at the top. Click to expand
a service to see which recent request URLs called the service. Path Stats shows the

380 | Chapter 17: Optimizing Service Calls

www.it-ebooks.info

http://www.it-ebooks.info/

same information organized by path, with the URL with the heaviest total number of
calls at the top. Click to expand a path to see a summary of the path’s calls per service.
The Most Recent Requests column references the Requests History table at the bot‐
tom of the screen.

The Requests History table at the bottom lists all recent requests for which AppStats
has data, up to 1,000 recent requests, with the most recent request on top. Click the +
to expand the tally of service calls made during the request.

To view the complete data for the request, click the blue request date and path in the
Requests History table. Figure 17-6 shows an expanded version of an example we saw
earlier.

Figure 17-6. The AppStats Console request details page, Python version with stack trace

The centerpiece of the request details page is the timeline. The timeline shows the
history of the entire request, with a separate line for each service call. From this you

Visualizing Calls with AppStats | 381

www.it-ebooks.info

http://www.it-ebooks.info/

can see when each service call began and ended in the lifetime of the request, the total
(aggregate) time of all service calls (the RPC Total), and the actual amount of time
spent handling the request (Grand Total). As we saw earlier, the Grand Total can be
less than the RPC Total if you use simultaneous asynchronous requests.

When running on App Engine (not the development server), the timeline also
includes red bars on top of the blue ones. This represents an estimate of the monetary
costs of the call, including API and bandwidth costs. (The unit, “API milliseconds,” is
not always useful, except in comparison to other red bars in the graph.)

The RPC Call Traces table below the timeline lets you examine each RPC call to find
out where in the code it occurred. In the Python version, each element in the stack
trace also includes the local variables at the call site at the time of the call.

The request details pages include another tab that shows the service call tallies (RPC
Stats). The Python version also has tabs for the environment variables as they were
set at the beginning of the request (CGI Environment), and the Python package load
path as it is currently set in the AppStats Console (sys.path). (The sys.path is not
the exact load path of the request being viewed; it is determined directly from the
AppStats Console environment itself.)

The interface to the datastore is a library built on top of a more
rudimentary service interface. The correspondence between library
calls and datastore RPCs is fairly intuitive, but you’ll notice a few
differences.
The most notable difference is how the datastore libraries fetch
query results. Some features of the query APIs, such as the != oper‐
ator, use multiple datastore queries behind the scenes. Also, when
results are fetched using iterator-based interfaces, the libraries use
multiple datastore RPCs to fetch results as needed. These will
appear as RunQuery and Next calls in AppStats.
Also, the local development server uses the RPC mechanism to
update index configuration, so it’ll sometimes show CreateIndex
and UpdateIndex calls that do not occur when running on App
Engine.
You can use stack traces to find where in the datastore library code
each call is being made.

382 | Chapter 17: Optimizing Service Calls

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18

The Django Web Application Framework

As with all major categories of software, web applications have a common set of
problems that need to be solved in code. Most web apps need software to interface
with the server’s networking layer, communicate using the HTTP protocol, define the
resources and actions of the application, describe and implement the persistent data
objects, enforce site-wide policies such as access control, and describe the browser
interface in a way that makes it easily built and modified by designers. Many of these
components involve complex and detailed best practices for interoperating with
remote clients and protecting against a variety of security vulnerabilities.

A web application framework is a collection of solutions and best practices that you
assemble and extend to make an app. A framework provides the structure for an app,
and most frameworks can be run without changes to demonstrate that the initial
skeleton is functional. You use the toolkit provided by the framework to build the
data model, business logic, and user interface for your app, and the framework takes
care of the details. Frameworks are so useful that selecting one is often the first step
when starting a new web app project.

Notice that App Engine isn’t a web application framework, exactly. App Engine pro‐
vides scaling infrastructure, services, and interfaces that solve many common prob‐
lems, but these operate at a level of abstraction just below most web app frameworks.
A better example of a framework is webapp2, a framework for Python included with
the App Engine Python SDK that we’ve been using in examples throughout the book
so far. webapp2 lets you implement request handlers as Python classes, and it takes
care of the details of interfacing with the Python runtime environment and routing
requests to handler classes.

383

www.it-ebooks.info

http://www.it-ebooks.info/

Several major frameworks for Python work well with App Engine. Django, Pyramid,
web2py, and Flask work well, and some frameworks have explicit support for App
Engine. These frameworks are mature, robust, and widely used, and have large thriv‐
ing support communities and substantial online documentation. You can buy books
about some of these frameworks.

Not every feature of every framework works with App Engine. Most notably, many
frameworks include a mechanism for defining data models, but these are usually
implemented for relational databases, and don’t work with the App Engine datastore.
In some cases, you can just replace the framework’s data modeling library with App
Engine’s ndb library. Some features of frameworks also have issues running within
App Engine’s sandbox restrictions, such as by depending upon unsupported libraries.
Developers have written adapter components that work around many of these issues.

In general, to use a framework, you add the framework’s libraries to your application
directory and then map all dynamic URLs (all URLs except those for static files) to a
script that invokes the framework. Because the interface between the runtime envi‐
ronment and the app is WSGI, you can associate the framework’s WSGI adapter with
the URL pattern in app.yaml, just as we did with webapp2. Most frameworks have
their own mechanism for associating URL paths with request handlers, and it’s often
easiest to send all dynamic requests to the framework and let it route them. You may
still want to use app.yaml to institute Google Accounts–based access control for some
URLs.

Django is a popular web application framework for Python, with a rich stack of fea‐
tures and pluggable components. It’s also large, consisting of thousands of files. To
make it easier to use Django on App Engine, the Python runtime environment
includes the Django libraries, so you do not have to upload all of Django with your
application files. The Python SDK bundles several versions of Django as well. App
Engine includes Django 1.5 as a third-party library that you can request from
app.yaml. You can use a newer version by downloading it and adding it to your appli‐
cation directory.

Django has its own data modeling library that is typically used with relational data‐
base as its backing store. Some Django components rely on this modeling library and
don’t work without it. On App Engine, an easy option is to use Google Cloud SQL
(introduced in Chapter 11) as the backing store for the Django library, though this
doesn’t have the automatic scaling features of Cloud Datastore. Alternatively, you can
use an adapter layer, such as djangae (currently only for Django 1.6 and 1.7), which
uses Cloud Datastore as the backing store for Django and works with most compo‐
nents. Many features of Django don’t need its native data modeling facility at all, and
you can always use App Engine’s ndb library directly in your own app code to access
Cloud Datastore.

384 | Chapter 18: The Django Web Application Framework

www.it-ebooks.info

https://github.com/potatolondon/djangae
http://www.it-ebooks.info/

The official documentation for Django is famously good, although it relies heavily on
Django’s own data modeling features for examples. For more information about
Django, see the Django project website.

In this chapter, we discuss how to use Django 1.5 via the provided libraries, and dis‐
cuss which of Django’s features work and which ones don’t when using Django this
way. We’ll also take a quick look at how to use Django with Cloud SQL.

Using the Bundled Django Library
The App Engine Python SDK provides Django 1.5 in its lib/django-1.5/ subdirectory.
With Django, you use a command-line tool to set up a new web application project.
This tool expects lib/django-1.5/ to be in the Python library load path, so it can load
modules from the django package.

One way to set this up is to add it to the PYTHONPATH environment variable on your
platform. For example, on the Mac OS X or Linux command line, using a bash-
compatible shell, run this command to change the environment variable for the cur‐
rent session to load Django 1.5 from the Python SDK located at ~/google-cloud-sdk/
platform/google_appengine/:

export APPENGINE_PATH=~/google-cloud-sdk/platform/google_appengine

export PYTHONPATH=$PYTHONPATH:$APPENGINE_PATH/lib/django-1.5

The commands that follow will assume the SDK is in ~/google-cloud-sdk/platform/
google_appengine/, and this PYTHONPATH is set.

The Django library is available in the runtime environment by using a libraries:
directive in app.yaml, just like other libraries. We’ll see an example of this in a
moment.

Using the Bundled Django Library | 385

www.it-ebooks.info

http://www.djangoproject.com/
http://www.it-ebooks.info/

Django 1.5 is the most recent version included with the Python
runtime environment as of App Engine version 1.9.18. Later ver‐
sions of Django are likely to be added to the runtime environment
in future releases.
Instructions should be similar for later versions, although it isn’t
clear whether all future versions of Django will be added to the
Python SDK. All previously included versions must remain in the
SDK for compatibility, and the SDK might get a little large if it bun‐
dles every version. You may need to install Django on your local
computer separately from the Python SDK in future versions.
Django will likely be included in the runtime environment itself,
similar to other third-party Python libraries. If you install Django
yourself, you do not need to adjust the PYTHONPATH, and can run
the Django commands without the library path.
You can install Django in your Python environment (or virtual
environment) using pip:

pip install Django==1.5

Check the App Engine website for updates on the inclusion of
future versions of Django in the runtime environment.

Creating a Django Project
For this tutorial, we will create an App Engine application that contains a Django
project. In Django’s terminology, a project is a collection of code, configuration, and
static files. A project consists of one or more subcomponents called apps. The Django
model encourages designing apps to be reusable, with behavior controlled by the
project’s configuration. The appearance of the overall website is also typically kept
separate from apps by using a project-wide template directory.

You create a new Django project by running a command called django-admin.py
startproject. Run this command to create a project named myproject in a subdir‐
ectory called myproject/:

export DJANGO_DIR=~/google-cloud-sdk/platform/google_appengine/lib/django-1.5

python $DJANGO_DIR/django/bin/django-admin.py startproject myproject

This command creates a project root directory in the current directory named
myproject/ with several starter files. This root directory contains a subdirectory, also
named myproject/. The starter files are as follows:

manage.py
A command-line utility you will use to build and manage this project, with many
features

386 | Chapter 18: The Django Web Application Framework

www.it-ebooks.info

http://www.it-ebooks.info/

myproject/__init__.py
A file that tells Python that code files in this directory can be imported as mod‐
ules (this directory is a Python package)

myproject/settings.py
Configuration for this project, in the form of a Python source file

myproject/urls.py
Mappings of URL paths to Python code, as a Python source file

myproject/wsgi.py
Code that sets up the WSGI middleware

The django-admin.py tool has many features, but most of them are specific to man‐
aging SQL databases. This is the last time we’ll use it here.

If you’re following along with a Django tutorial or book, the next step is usually to
start the Django development server by using the manage.py command. If you did so
now, you would be running the Django server, but it would know nothing of App
Engine. We want to run this application in the App Engine development server. To do
that, we need a couple of additional pieces.

Hooking It Up to App Engine
To connect our Django project to App Engine, we need a short script that instantiates
the Django WSGI adapter, and an app.yaml configuration file that maps all (non‐
static) URLs to the Django project.

Create a file named main.py in the application root directory (the outer myproject/
directory) with the following contents:

import os
os.environ['DJANGO_SETTINGS_MODULE'] = 'myproject.settings'

import django.core.handlers.wsgi

application = django.core.handlers.wsgi.WSGIHandler()

The first two lines tell Django where to find the project’s settings module, which in
this case is at the module path myproject.settings (the myproject/settings.py file).
This must be set before importing any Django modules. The remaining two lines
import the WSGI adapter, instantiate it, and store it in a global variable.

Next, create app.yaml in the application root directory, like so:

application: myapp
version: 1
runtime: python27
api_version: 1

Hooking It Up to App Engine | 387

www.it-ebooks.info

http://www.it-ebooks.info/

threadsafe: yes

handlers:
- url: .*
 script: main.application

libraries:
- name: django
 version: "1.5"

This should be familiar by now, but to review, this tells App Engine this is an applica‐
tion with ID myapp and version ID 1 running in the Python 2.7 runtime environment,
with multithreading enabled. All URLs are routed to the Django project we just cre‐
ated, via the WSGI adapter instantiated in main.py. The libraries: declaration
selects Django 1.5 as the version to use when importing django modules.

Our directory structure so far looks like this:

myproject/
 app.yaml
 main.py
 manage.py
 myproject/
 __init__.py
 settings.py
 urls.py
 wsgi.py

We can now start this application in a development server. Start the development
server from the command line, using the current working directory as the application
root directory:

dev_appserver.py .

Load the development server URL (http://localhost:8080/) in a browser, and
enjoy the welcome screen (Figure 18-1).

388 | Chapter 18: The Django Web Application Framework

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 18-1. The Django welcome screen

Creating a Django App
The next step is to add a Django “app” to the Django project. You create new Django
apps by using the project’s manage.py script, which was generated when you created
the project. (You can also use django-admin.py to create apps.)

With the current working directory still set to the application root, create a new app
named bookstore for this project:

python manage.py startapp bookstore

This creates the subdirectory bookstore, with four new files:

__init__.py
A file that tells Python that code files in this directory can be imported as mod‐
ules (this directory is a Python package)

models.py
A source file for data models common to this app

tests.py
A starter file illustrating how to set up automated tests in Django

views.py
A source file for Django views (request handlers)

Creating a Django App | 389

www.it-ebooks.info

http://www.it-ebooks.info/

This layout is Django’s way of encouraging a design philosophy that separates data
models and request handlers into separate, testable, reusable units of code. This phi‐
losophy comes naturally when using the datastore and ndb. Django does not depend
on this file layout directly, and you can change it as needed.

In addition to creating the app, it’s useful to tell Django explicitly that this app will be
used by this project. Edit myproject/settings.py, and find the INSTALLED_APPS value.
Set it to a tuple containing the Python path to the app’s package:

INSTALLED_APPS = (
 'bookstore',
)

Be sure to include the trailing comma, which tells Python this is a one-element tuple.

The settings.py file is a Python source file. It contains settings for the Django frame‐
work and related components, in the form of variables. The INSTALLED_APPS setting
lists all apps in active use by the project, which enables some automatic features such
as template loading. (It’s primarily used by Django’s data modeling tools, which we
won’t be using, in favor of App Engine’s ndb.)

Let’s define our first custom response. Edit bookstore/views.py, and replace its con‐
tents with the following:

from django import http

def home(request):
 return http.HttpResponse('Welcome to the Book Store!')

In Django, a view is a function that is called with a django.http.HttpRequest object
and returns a django.http.HttpResponse object. This view creates a simple response
with some text. As you would expect, the HttpRequest provides access to request
parameters and headers. You can set headers and other aspects of the HttpResponse.
Django provides several useful ways to make HttpResponse objects, as well as special‐
ized response classes for redirects and other return codes.

We still need to connect this view to a URL. URLs for views are set by the project, in
the myproject/urls.py file. This allows the project to control the URLs for all of the
apps it uses. You can organize URLs such that each app specifies its own set of map‐
pings of URL subpaths to views, and the project provides the path prefix for each app.
For now, we’ll keep it simple, and just refer to the app’s view directly in the project’s
URL configuration.

Each Django app defines its own URL patterns. Create a new file in the bookstore/
directory named urls.py, and give it the following contents:

from django.conf.urls import patterns, url

from bookstore import views

390 | Chapter 18: The Django Web Application Framework

www.it-ebooks.info

http://www.it-ebooks.info/

urlpatterns = patterns('',
 url(r'^$', views.home),
)

Add a reference to the bookstore/urls.py file from the project’s main myproject/urls.py,
like so:

from django.conf.urls import include, patterns, url

urlpatterns = patterns('',
 url(r'^books/', include('bookstore.urls')),
)

The entry in the project’s myproject/urls.py file maps all URL paths that begin with
books/ to the bookstore Django app. The entry in bookstore/urls.py matches sub‐
paths of this path. The pattern r'^books/$' matches books/, and this is followed by
the pattern r'^$', which matches the empty string.

With the development server still running, load the /books/ URL in your browser.
The app calls the view to display some text.

You may notice that, now that you have defined a URL pattern, the URL / no longer
displays the Django welcome screen. Eventually, you will want to add an entry to
myproject/urls.py to associate the root URL path with an appropriate view.

Using Django Templates
Django includes a templating system for building web pages and other displayable
text. The Jinja2 templating library we’ve used throughout the book so far is based on
the Django template system. Their syntaxes are mostly similar, but you’ll notice
minor differences between the two systems. As just one example, Jinja2 lets you call
methods on template values with arguments, and so requires that you use parentheses
after the method even when not using arguments: {{ someval.method() }}. In
Django, templates can call methods of values but cannot pass arguments, and so the
parentheses are omitted: {{ someval.method }}.

Django templates are baked into the Django framework, so they’re easy to use. It’s
possible to use Jinja2 templates with a Django application, but Jinja2 does not auto‐
matically support some of the organizational features of Django.

Let’s update the example to use a Django template. First, we need to set up a template
directory for the bookstore Django app. In the bookstore/ directory, create a directory
named templates/, and a subdirectory in there named bookstore:

mkdir -p bookstore/templates/bookstore

Using Django Templates | 391

www.it-ebooks.info

http://www.it-ebooks.info/

(The -p option to mkdir tells it to create the entire path of subdirectories, if any sub‐
directory does not exist.)

By default, Django knows how to look for templates in each app’s templates/ subdirec‐
tory. We create another subdirectory named after the app (templates/bookstore/) so
that bookstore templates all have a common path prefix.

Inside the bookstore/templates/bookstore/ subdirectory, create the file index.html with
the following template text:

<html>
 <body>
 <p>Welcome to The Book Store! {{ clock }}</p>
 </body>
</html>

Finally, edit bookstore/views.py to look like this:

from django.shortcuts import render_to_response
import datetime

def home(request):
 return render_to_response(
 'bookstore/index.html',
 { 'clock': datetime.datetime.now() },
)

Reload the page to see the template displayed by the new view.

The render_to_response() shortcut function takes as its first argument the path to
the template file. This path is relative to bookstore/templates/. The second argument is
a Python mapping that defines variables to be used within the template. In this exam‐
ple, we set a template variable named clock to be the current datetime.datetime.
Within the template, {{ code }} interpolates this value as a string.

The behavior of the template engine can be extended in many ways. You can
define custom tags and filters to use within templates. You can also change
how templates are loaded, with template loader classes and the TEMPLATE_LOADERS
setting variable. The behavior we’re using here is provided by the
django.template.loaders.app_directories.Loader class, which appears in the
default settings file created by Django.

Using ndb with Django
In Chapter 9, we discussed several powerful automatic behaviors of the ndb library.
To support these features, ndb needs an opportunity to clean up pending operations
when a request handler is finished. Django needs to be told to give ndb this opportu‐
nity. ndb provides a class that Django knows how to call at the beginning and end of

392 | Chapter 18: The Django Web Application Framework

www.it-ebooks.info

http://www.it-ebooks.info/

1 In the old ext.db library, this compatibility was provided by the google.appengine.ext.db.djangoforms
module, which wrapped the Django forms interface. There is no equivalent adapter for Django and ndb, but
WTForms is a capable substitute.

each request. Django calls this class middleware, because it lives in the middle of the
call stack.

Edit myproject/settings.py, then locate MIDDLEWARE_CLASSES. At the top of this list,
insert an entry for the ndb middleware, like so:

MIDDLEWARE_CLASSES = (
 'google.appengine.ext.ndb.django_middleware.NdbDjangoMiddleware',
 # ...
)

You don’t have to think too hard about how this works. Just remember to include it
when using ndb and Django together. If your app doesn’t use the ndb library, you
don’t need the middleware.

Using WTForms with ndb
One of the many arduous tasks that web frameworks can do well is forms, those
pages of data entry fields that users fill out and submit, and applications store away
for processing later. A good framework makes it easy to describe forms and their cor‐
responding data models, and takes care of HTML rendering, data validation, error
reporting, and security. Django includes a forms framework, but it only works with
Django’s data modeling library, and doesn’t work with App Engine’s ndb.1 Instead, you
can use a work-alike library called WTForms. You don’t need Django to use
WTForms: it works just as well with webapp2, Flask, or any other framework.

We won’t go into the details of how WTForms works—see the WTForms documenta‐
tion for a complete explanation—but let’s walk through a quick example to see how
the pieces fit together. Our example will use the following behavior for creating and
editing Book entities:

• An HTTP GET request to /books/book/ displays an empty form for creating a
new Book.

• An HTTP POST request to /books/book/ processes the book creation form, and
either creates the book and redirects to /books (the book listing page) or redis‐
plays the form with errors, if any.

• An HTTP GET request to /books/book/1234 displays the form to edit the Book
entity, with the fields filled out with the current values.

Using WTForms with ndb | 393

www.it-ebooks.info

https://wtforms.readthedocs.org/en/latest/index.html
https://wtforms.readthedocs.org/en/latest/index.html
http://www.it-ebooks.info/

• An HTTP POST request to /books/book/1234 updates the book with that ID,
with the same error-handling behavior as the book creation form.

WTForms is a third-party library that is not provided by App Engine, so it must be
added directly to the application code. From the application root directory, run the
following command:

pip install -t lib WTForms WTForms-Appengine

Clean up unnecessary installation control files.
rm -rv lib/*-info

This creates a lib/ directory, and installs the WTForms library and its App Engine ndb
plug-in. When you deploy your app, these files will be deployed with it and will be
available to the app.

To make libraries in lib/ available for import, we must add it to the lookup path. Edit
main.py, and add these lines near the top:

import sys
sys.path.append('lib')

Let’s set up the new form URLs. Edit bookstore/urls.py to use a new view function
named book_form() to handle these URLs:

from django.conf.urls.defaults import patterns, url

urlpatterns = patterns('myproject',
 url(r'^book/(\d*)', views.book_form),
 url(r'^$', views.home),
)

The regular expression '^book/(\d*)' captures the book ID in the URL, if any, and
passes it to the view function as an argument.

Edit bookstore/models.py and replace its contents with the following ndb model defini‐
tions:

from google.appengine.ext import ndb

class Book(ndb.Model):
 title = ndb.StringProperty()
 author = ndb.StringProperty()
 copyright_year = ndb.IntegerProperty()
 author_birthdate = ndb.DateProperty()

class BookReview(ndb.Model):
 book = ndb.KeyProperty(kind='Book')
 review_author = ndb.UserProperty()
 review_text = ndb.TextProperty()
 rating = ndb.StringProperty(choices=['Poor', 'OK', 'Good',
 'Very Good', 'Great'],

394 | Chapter 18: The Django Web Application Framework

www.it-ebooks.info

http://www.it-ebooks.info/

 default='Great')
 create_date = ndb.DateTimeProperty(auto_now_add=True)

No surprises here. These are just ndb models for datastore entities of the kinds Book
and BookReview.

Now for the views. Edit bookstore/views.py, and replace its contents with the follow‐
ing:

from django import template
from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response
from google.appengine.ext import ndb
from wtforms_appengine.ndb import model_form

from bookstore import models

def home(request):
 q = models.Book.query().order('title')
 return render_to_response('bookstore/index.html',
 {'books': q})

BookForm = model_form(models.Book)

def book_form(request, book_id=None):
 if request.method == 'POST':
 # The form was submitted.
 if book_id:
 # Fetch the existing Book and update it from the form.
 book = models.Book.get_by_id(int(book_id))
 form = BookForm(request.POST, obj=book)
 else:
 # Create a new Book based on the form.
 book = models.Book()
 form = BookForm(request.POST)

 if form.validate():
 form.populate_obj(book)
 book.put()
 return HttpResponseRedirect('/books/')
 # else fall through to redisplay the form with error messages

 else:
 # The user wants to see the form.
 if book_id:
 # Show the form to edit an existing Book.
 book = models.Book.get_by_id(int(book_id))
 form = BookForm(obj=book)
 else:
 # Show the form to create a new Book.
 form = BookForm()

 return render_to_response('bookstore/bookform.html', {

Using WTForms with ndb | 395

www.it-ebooks.info

http://www.it-ebooks.info/

 'book_id': book_id,
 'form': form,
 }, template.RequestContext(request))

We’ve updated the home() view to set up a query for Book entities, and pass that query
object to the template. Edit bookstore/templates/bookstore/index.html to display this
information:

<html>
 <body>
 <p>Welcome to The Book Store!</p>
 <p>Books in our catalog:</p>

 {% for book in books %}
 {{ book.title }}, by {{ book.author }} ({{ book.copyright_year }})
 [edit]
 {% endfor %}

 <p>[add a book]</p>
 </body>
</html>

Finally, create the template for the form used by the new book_form() view, named
bookstore/templates/bookstore/bookform.html:

<html>
 <body>

 {% if book_id %}
 <p>Edit book {{ book_id }}:</p>
 <form action="/books/book/{{ book_id }}" method="POST">
 {% else %}
 <p>Create book:</p>
 <form action="/books/book/" method="POST">
 {% endif %}
 {% csrf_token %}
 <p>
 {{ form.title.label|safe }}: {{ form.title|safe }}
 {% if form.title.errors %}

 {% for error in form.title.errors %}
 {{ error }}
 {% endfor %}

 {% endif %}
 </p>
 <p>
 {{ form.author.label|safe }}: {{ form.author|safe }}
 {% if form.author.errors %}

 {% for error in form.author.errors %}
 {{ error }}
 {% endfor %}

396 | Chapter 18: The Django Web Application Framework

www.it-ebooks.info

http://www.it-ebooks.info/

 {% endif %}
 </p>
 <p>
 {{ form.copyright_year.label|safe }}: {{ form.copyright_year|safe }}
 {% if form.copyright_year.errors %}

 {% for error in form.copyright_year.errors %}
 {{ error }}
 {% endfor %}

 {% endif %}
 </p>
 <p>
 {{ form.author_birthdate.label|safe }}: {{ form.author_birthdate|safe }}
 {% if form.author_birthdate.errors %}

 {% for error in form.author_birthdate.errors %}
 {{ error }}
 {% endfor %}

 {% endif %}
 </p>
 <input type="submit" />
 </form>

 </body>
</html>

BookForm is a class generated by the model_form() function, based on the
models.Book ndb model. You can also define form classes manually by subclassing
wtforms.Form. A form model is very similar to an ndb data model, using class mem‐
bers to declare typed fields. Because form data is typically stored in a datastore once it
is submitted, it is convenient to define the form model in terms of the underlying
data model, so you don’t have to describe the same thing twice and keep both models
in sync.

The form class has useful default rendering and processing behavior for each of the
default property declaration types, and you can customize this extensively. For now,
we’ll use the defaults produced by model_form(). An instance of the form class is
responsible for storing the form data entered by the user, keeping track of validation
errors, and populating the ndb.Model instance when we’re ready to store the data.

The book_form() view function takes the HTTP request object and the book_id cap‐
tured by the regular expression in urls.py as arguments. If the request method is
'POST', then it processes the submitted form. Otherwise it assumes the method is
'GET' and just displays the form. In either case, the form is represented by an
instance of the BookForm class.

Using WTForms with ndb | 397

www.it-ebooks.info

http://www.it-ebooks.info/

If constructed without arguments, the BookForm represents an empty form for creat‐
ing a new Book entity. If constructed with the obj argument set to a Book object, the
form’s fields are prepopulated with the object’s property values.

To process a submitted form, you pass the dictionary of POST parameters
(request.POST) to the BookForm constructor as its first positional argument. If you
also provide the obj argument, the instance sets the initial values—including the
entity key—and the form data overwrites everything else, as provided.

The BookForm object knows how to render the form based on the model class and the
provided model instance (if any). It also knows how to validate data submitted by the
user, and render the form with the user’s input and any appropriate error messages
included. The validate() method tells you if the submitted data is acceptable for
saving to the datastore. If it isn’t, you send the BookForm to the template just as you
would when displaying the form for the first time.

If the data submitted by the user is valid, the BookForm knows how to produce the
final entity object. The populate_obj() method takes an entity instance and popu‐
lates its properties based on the submitted form data. In this example, a successful
create or update redirects the user to /books/ (which we’ve hardcoded in the view for
simplicity) instead of rendering a template.

To display the form, we pass the BookForm object to the bookstore/templates/bookstore/
bookform.html template. Methods on the object generate HTML for the labels and
form fields for each property. Our template also tests for validation errors, in case the
form is being redisplayed because of a data entry error, and prints error messages as
needed.

Restart the development server, then load the book list URL (/books/) in the browser.
Click “add a book” to show the book creation form. Enter some data for the book,
then submit it to create it. Because the development server may try to display the
book list prior to updating the global datastore index, you may need to reload the
book list after creating a book to see it appear.

The default form widget for a date field is just a text field, and it’s
finicky about the format. In this case, the “author birthdate” field
expects input in the form YYYY-MM-DD, such as 1902-02-27.

Continue the test by clicking the “edit” link next to one of the books listed. The form
displays with that book’s data. Edit some of the data and then submit the form to
update the entity.

398 | Chapter 18: The Django Web Application Framework

www.it-ebooks.info

http://www.it-ebooks.info/

Also try entering invalid data for a field, such as nonnumeric data for the “copyright
year” field, or a date that doesn’t use the expected format. Notice that the form redis‐
plays with your original input, and with error messages.

The main thing to notice about this example is that the data model class itself (in this
case Book) completely describes the default form, including the display of its form
fields and the validation logic. The default field names are based on the names of the
properties. You can change a field’s name by specifying a verbose_name argument to
the property declaration on the model class:

class Book(ndb.Model):
 title = ndb.StringProperty(verbose_name="Book title")
 # ...

With WTForms, you can customize the display, the error messages, and the valida‐
tion routines in many ways. See the WTForms documentation for more information.

Cross-Site Request Forgery
Cross-site request forgery (CSRF) is a class of security issues with web forms where
the attacker lures a victim into submitting a web form whose action is your web appli‐
cation, but the form is under the control of the attacker. The malicious form may
intercept the victim’s form values, or inject some of its own, and cause the form to be
submitted to your app on behalf of the victim.

Django has a built-in feature for protecting against CSRF attacks, and it is enabled by
default. The protection works by generating a token that is added to forms displayed
by your app, and is submitted with the user’s form fields. If the form is submitted
without a valid token, Django rejects the request before it reaches the view code. The
token is a digital signature, and is difficult to forge.

This requires the cooperation of our example code in two places. The template/book‐
store/bookform.html template includes the {% csrf_token %} template tag some‐
where inside the <form> element. Also, the render_to_response() function needs to
pass the request to the template when rendering the form, with a third argument, tem
plate.RequestContext(request).

The blocking magic happens in a component known as middleware, similar to the
middleware we added for ndb support. This architectural feature of Django lets you
compose behaviors that act on some or all requests and responses, independently of
an app’s views. The MIDDLEWARE_CLASSES setting in settings.py activates middleware,
and django.middleware.csrf.CsrfViewMiddleware is enabled by default. If you
have a view that accepts POST requests and doesn’t need CSRF protection (such as a
web service endpoint), you can give the view the @csrf_exempt decorator, from the
django.views.decorators.csrf module.

Using WTForms with ndb | 399

www.it-ebooks.info

http://www.it-ebooks.info/

2 If you intend to use Django with Google Cloud SQL, stick with Django 1.5. As of App Engine 1.9.18, the
google.appengine.ext.django.backends.rdbms custom driver is not compatible with Django 1.8.

This feature of Django illustrates the power of a full-stack web application frame‐
work. Not only is it possible to implement a security feature like CSRF protection
across an entire site with a single component, but this feature can be provided by a
library of such components. (You could argue that this is a poor example, because it
imposes requirements on views and templates that render forms. But the feature is
useful enough to be worth it.)

See Django’s CSRF documentation for more information.

Using a Newer Version of Django
The versions of the Django library that are available in the App Engine runtime envi‐
ronment tend to lag behind the latest releases. As of App Engine 1.9.18, App Engine
provides up to Django 1.5, while the latest release of Django is 1.8. There are good
reasons to use newer versions, and it’s usually not a problem to do so.2 Instead of
using a built-in version, you add Django to your application files.

You can add Django 1.8 to your app just as we did earlier with the WTForms library.
Run these commands from the application root directory:

pip install -t lib Django==1.8
rm -rv lib/*-info

If you haven’t already, add these lines near the top of main.py:

import sys
sys.path.append('lib')

Remove django from the libraries: section of app.yaml.

We must make one small change to main.py to upgrade to Django 1.8’s method of
setting up the WSGI application instance. The complete file looks like this:

import os
os.environ['DJANGO_SETTINGS_MODULE'] = 'myproject.settings'

import sys
sys.path.append('lib')

from django.core.wsgi import get_wsgi_application

application = get_wsgi_application()

Restart the development server, and confirm that the app is still working.

400 | Chapter 18: The Django Web Application Framework

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/csrf/
http://www.it-ebooks.info/

If you ever need to run the django-admin.py command, or if you just want to start a
new project from scratch using the new version, be sure to use the new installation,
like so:

export DJANGO_DIR=.../myproject/lib/

python $DJANGO_DIR/django/bin/django-admin.py startproject newproject

A complete installation of Django contains nearly 4,000 files. Be aware that App
Engine imposes a file count limit of 10,000 application files per version per app. You
may be able to remove components from lib/django/contrib that you are not using to
reduce the number of files. For example, in Django 1.8, GeoDjango (lib/django/
contrib/gis) contributes 608 files.

Using Django with Google Cloud SQL
While Django as we’ve seen it so far is already quite useful for App Engine apps, the
framework really shines when paired with a relational database. You can configure
Django to use Google Cloud SQL from App Engine to take advantage of a rich collec‐
tion of database-backed features and plug-ins.

If you haven’t already, perform the setup steps described in Chapter 11 to install
MySQL and the MySQLdb library on your local computer, set up a Cloud SQL
instance, and create a database.

You configure Django to use a database with settings in the myproject/settings.py file.
With App Engine and Cloud SQL, you can use the django.db.backends.mysql
driver included with Django, setting the 'HOST' parameter to be the /cloudsql/
socket path for the Cloud SQL instance.

Continuing the example from the Cloud SQL chapter, with a project ID of saucy-
boomerang-123, an instance name of mydb, a database named mmorpg, and a user
named app, the configuration that would work when running on App Engine to con‐
nect to Cloud SQL looks like this:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'HOST': '/cloudsql/saucy-boomerang-123:mydb',
 'NAME': 'mmorpg',
 'USER': 'app'
 }
}

Using Django with Google Cloud SQL | 401

www.it-ebooks.info

http://www.it-ebooks.info/

When testing the app locally, we need different configuration to tell Django to use the
local MySQL test database. The settings.py file is Python code, so we can use condi‐
tional logic to select database configuration based on the environment:

import os

if os.environ.get('SERVER_SOFTWARE', '').startswith('Google App Engine'):
 # This is App Engine.
 DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'HOST': '/cloudsql/saucy-boomerang-123:mydb',
 'NAME': 'mmorpg',
 'USER': 'app'
 }
 }
else:
 # This is a development server.
 DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'HOST': '127.0.0.1',
 'NAME': 'mmorpg',
 'USER': 'app',
 'PASSWORD': 'p4$$w0rd'
 }
 }

In addition to the application code, Django’s command-line tools use this configura‐
tion to create and manage table schemas. These tools run locally, and during develop‐
ment you use these tools to update your local MySQL database. You also use these
tools to update the live database prior to deploying new software.

For this to work, the configuration needs to support a third case: connecting to the
live database from the local machine. The App Engine SDK includes a custom driver
to support this case, called google.appengine.ext.django.backends.rdbms. The
custom driver uses gcloud authentication to access your app’s databases. Here is one
way to set this up in settings.py:

import os

if os.environ.get('SERVER_SOFTWARE', '').startswith('Google App Engine'):
 # This is App Engine.
 # ...

elif os.environ.get('MANAGE_DATABASE_MODE') == 'live':
 # The administrator is running a command-line tool in "live" mode.
 DATABASES = {
 'default': {
 'ENGINE': 'google.appengine.ext.django.backends.rdbms',
 'INSTANCE': 'saucy-boomerang-123:mydb',

402 | Chapter 18: The Django Web Application Framework

www.it-ebooks.info

http://www.it-ebooks.info/

 'NAME': 'mmorpg',
 'USER': 'app'
 }
 }

else:
 # This is a development server.
 # ...

The App Engine SDK must be on the PYTHONPATH library lookup path for the
command-line tools to find and use the custom driver. If you haven’t already, add
~/google-cloud-sdk/platform/google_appengine (where ~/google-cloud-sdk is
the path to your Cloud SDK installation) to this path in your environment. The yaml
library is also needed, and is included with the SDK. If you’re using the version of
Django distributed with the SDK, add the path to this library to PYTHONPATH as well.

For example, if using the bash shell, add this to your .bashrc file:

export APPENGINE_PATH=~/google-cloud-sdk/platform/google_appengine

export PYTHONPATH=$PYTHONPATH:$APPENGINE_PATH
export PYTHONPATH=$PYTHONPATH:$APPENGINE_PATH/lib/yaml/lib
export PYTHONPATH=$PYTHONPATH:$APPENGINE_PATH/lib/django-1.5

The MANAGE_DATABASE_MODE environment variable is just an environment variable
you can set when you run a Django tool. In Mac OS, Linux, or Windows with Cyg‐
win, you can set this environment variable when you run a command, like so:

MANAGE_DATABASE_MODE='live' ./manage.py syncdb

To use your local database, simply leave the environment variable unset:

./manage.py syncdb

The ./manage.py tool was created in your application root directory when you ran
the django-admin.py startproject command. You use this to update and manage
your database.

With all of this set up, you can now perform every step of the official Django tutorial.
As before, use dev_appserver.py . instead of ./manage.py runserver to start the
development server.

Using Django with Google Cloud SQL | 403

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/intro/tutorial01/
http://www.it-ebooks.info/

The manage.py tool needs enough database privileges to create,
update, and drop tables. In Chapter 11, we created the app account
and gave it specific privileges that did not include creating and
dropping tables. To expand the privileges on this account, connect
to the database using your root account:

mysql -h ... -u root -p

At the mysql> prompt, grant all privileges to app:
GRANT ALL ON mmorpg.* TO 'app';

You may want to create a separate admin database account that is
used exclusively by manage.py, then either modify manage.py to
modify settings.DATABASES, or use the environment variable
technique to select this account in settings.py.

404 | Chapter 18: The Django Web Application Framework

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19

Managing Request Logs

Activity and message logs are an essential part of a web application. They are your
view into what happens with your application over time as it is being used, who is
using it and how, and what problems, if any, your users are having.

App Engine logs all incoming requests for your application, including application
requests, static file requests, and requests for invalid URLs (so you can determine
whether there is a bad link somewhere). For each request, App Engine logs the date
and time, the IP address of the client, the URL requested (including the path and
parameters), the domain name requested, the browser’s identification string (the
“user agent”), the referring URL if the user followed a link, and the HTTP status code
in the response returned by the app or by the frontend.

App Engine also logs several important statistics about each request: the amount of
time it took to handle each request, the amount of “CPU time” that was spent han‐
dling the request, and the size of the response. The CPU time measurement is partic‐
ularly important to watch because requests that consistently consume a large amount
of CPU may be throttled, such that the CPU use is spread over more clock time.

Your application code can log the occurrence of notable events and data by using a
logging API. Logging a message associates a line of text with the request that emitted
it, including all the data logged for the request. Each message has a log level indicating
the severity of the message to make it easier to find important messages during analy‐
sis. App Engine supports five log levels: debug, info, warning, error, and critical.

You can browse your application’s request and message logs, using the Cloud Con‐
sole, under Monitoring, Logs. You can also download your log data for offline analy‐
sis and recordkeeping. An app can query log data programmatically using the log
service API.

405

www.it-ebooks.info

http://www.it-ebooks.info/

In this brief but important chapter, we’ll look at all of these features of the logging
system.

If you’re new to web programming, you can ignore the advanced
features of the logging system for now. But be sure to read the first
couple of sections right away. Writing log messages and finding
them in the Cloud Console are important methods for figuring out
what’s going on in a web application.

Writing to the Log
App Engine writes information about every request to the application log automati‐
cally. The app can write additional messages during the request to note application-
specific details about what happened during the request handler.

An application log message has a log level that indicates the importance of the mes‐
sage. App Engine supports five levels: debug, info, warning, error, and critical. These
are in order of “severity,” where “debug” is the least severe. When you browse or
query log data, you can filter for messages above a given log level, such as to see just
the requests where an error condition occurred.

App Engine will occasionally write its own messages to the log for a request.
Uncaught application exceptions are written to the log as errors, with traceback infor‐
mation. When a handler exceeds its request deadline, App Engine writes an explicit
message stating this fact. App Engine may also write informational messages, such as
to say that the request was the first request served from a newly started instance, and
so may have taken more time than usual.

In the development server, log messages are printed to the terminal. During develop‐
ment, you can use log messages to see what’s going on inside your application, even if
you decide not to keep those log messages in the live version of the app.

Python applications can use the logging module from the standard library to log
messages. App Engine hooks into this module to relay messages to the logging sys‐
tem, and to get the log level for each message. Example 19-1 shows this module in
action.

Example 19-1. The use of the logging Python module to emit messages at different log
levels

import logging

...
 logging.debug('debug level')
 logging.info('info level')
 logging.warning('warning level')

406 | Chapter 19: Managing Request Logs

www.it-ebooks.info

http://www.it-ebooks.info/

 logging.error('error level')
 logging.critical('critical level')

 sys.stderr.write('stderr write, logged at the error level\n')

In addition to messages logged with the logging module, each line of text written to
the standard error stream (sys.stderr) is logged at the “error” level. (Because Python
uses CGI, anything written to the standard output stream becomes part of the
response data.)

In a traditional application using the logging module, you would configure the mod‐
ule to output only messages above a given level of severity. When running on App
Engine, log messages are always recorded, at all log levels. You can filter messages by
severity after the fact in the Cloud Console, or when downloading logs with
appcfg.py.

When running in the development web server, log messages are written to the Con‐
sole, and data written to sys.stderr is written to the server’s error stream.

The development server sets its log level to INFO by default. You can change this to
DEBUG by giving the server the command-line argument --debug.

Viewing Recent Logs
You can browse and search your application’s request logs and messages from the
Cloud Console. Open the Monitoring top-level section, then select the Logs panel.
Figure 19-1 shows the Logs panel with a request opened to reveal the detailed request
data.

The Logs panel features a rich dynamic interface for browsing and searching recent
log data. You can load more results in real time by scrolling to the ends of the list. You
can filter this display by module, version, and log level.

You can also apply textual filters to labels and other request metadata. There are two
ways to specify a filter: as a regular expression, or as a set of labels and patterns.
When you specify just a regular expression, the Logs panel shows all requests where
any field or application log message matches the expression.

You can use labels and patterns to match more specific fields of the request. Each field
filter is the field name followed by a colon, then the regular expression for the pat‐
tern. Field filters are delimited by spaces. Some useful examples of fields are path (the
URL path, starting with a slash) and user (a user signed in with a Google Account;
the pattern matches the Google username). For example, this query shows requests
by the user dan.sanderson for paths beginning with /admin/:

path:/admin/.* user:dan\.sanderson

Viewing Recent Logs | 407

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 19-1. The Logs panel in the Cloud Console

The Logs panel shows log data for the application version currently selected in the
drop-down menus. If you’re having a problem with a live app, a useful technique is to
deploy a separate version of the app with additional logging statements added to the
code near the problem area, and then reproduce the issue using the version-specific
URL (or temporarily make the new version the default, then switch it back). Then
you can view and search the logs specific to the version with the added logging mes‐
sages.

If a specific long-running instance appears to be having trouble, you can view logs
just for that instance. Open the Compute top-level section, App Engine, then the
Instances panel, then find the Logs column and click the View link for the instance
you wish to inspect.

The Logs panel is useful for digging up more information for problems with the
application code. For broader analysis of traffic and user trends, you’ll want to down‐
load the log data for offline processing, or use a web traffic analytics product like
Google Analytics.

408 | Chapter 19: Managing Request Logs

www.it-ebooks.info

http://www.google.com/analytics/
http://www.it-ebooks.info/

Downloading Logs
You can download log data for offline analysis and archiving by using the AppCfg
command-line tool. To use it, run appcfg.py with the request_logs command, with
the application directory and log output filename as arguments.

The following command downloads request logs for the app in the development
directory clock, and saves them to a file named logs.txt:

appcfg.py request_logs clock logs.txt

This command takes many of the same arguments as appcfg.py update, such as
those used for authentication.

The command fetches log data for the application ID and version described in
the application config file. As with appcfg.py update, you can override these with
the --application=… and --version=… arguments, respectively.

By default, this command downloads request data only. To download log messages
emitted by the application, include a minimum severity level specified as a number,
where 0 is all log messages (“debug” level and up) and 5 is only “critical” messages,
using the --severity argument:

appcfg.py request_logs clock logs.txt --severity=1

Application messages appear in the file on separate lines immediately following the
corresponding request. The format for this line is a tab, the severity of the message as
a number, a colon, a numeric timestamp for the message, then the message:

 1:1246801590.938119 get_published_entries cache HIT

Log data is ordered chronologically by request, from earliest to latest. Application
messages are ordered within each request by their timestamps.

Request data appears in the file in a common format known as the Apache Combined
(or “NCSA Combined”) logfile format, one request per line (shown here as two lines
to fit on the page):

127.0.0.1 - - [05/Jul/2009:06:46:30 -0700] "GET /blog/ HTTP/1.1" 200 14598 -
"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_5_8; en-us)...,gzip(gfe)"

From left to right, the fields are:

• The IP address of the client
• A - (an unused field retained for backward compatibility)
• The email address of the user who made the request, if the user is signed in using

Google Accounts; otherwise a - appears here
• The date and time of the request

Downloading Logs | 409

www.it-ebooks.info

http://www.it-ebooks.info/

• The HTTP command string in double quotes, including the method and URL
path

• The HTTP response code returned by the server
• The size of the response, as a number of bytes
• The Referrer header provided by the client, usually the URL of the page that

linked to this URL
• The User-Agent header provided by the client, usually identifying the browser

and its capabilities

By default, the command fetches the last calendar day’s worth of logs, back to mid‐
night, Pacific Time. You can change this with the --num_days=… argument. Set this
to 0 to get all available log data. You can also specify an alternative end date with the
--end_date=… option, whose value is of the form YYYY-MM-DD (such as 2009-11-04).

You can specify the --append argument to extend the log data file with new data, if
the logfile exists. By default, the command overwrites the file with the complete result
of the query. The append feature is smart: it checks the data file for the date and time
of the most recent log message, then only appends messages from after that time.

Logs Retention
By default, App Engine stores up to 1 gigabyte of log data, or up to 90 days worth of
messages, whichever is less. Once the retention limit is reached, the oldest messages
are dropped in favor of new ones.

You can increase the maximum amount and maximum age in the Compute, App
Engine, Settings panel of the Cloud Console. Locate the Logs Retention setting, enter
new values, and then click Save Settings.

The first gigabyte and 90 days of retention are included with the cost of your applica‐
tion. Additional storage and retention time is billed at a storage rate specific to logs.
See the official website for the latest rates. If you’re paying for log storage, you can
retain logs for up to 365 days (one year).

Querying Logs from the App
App Engine provides a simple API for querying log data directly from the applica‐
tion. With this API, you can retrieve log data by date-time ranges, filter by log level
and version ID, and page through results. You can use this API to build custom inter‐
active log data inspectors for your app, or implement log-based alerts.

This is the same API that the Cloud Console uses to power the Logs panel. You’ll
notice that the API does not include filters based on regular expressions. Instead, the

410 | Chapter 19: Managing Request Logs

www.it-ebooks.info

http://www.it-ebooks.info/

Logs panel simply pages through unfiltered results, and only displays those that
match a given pattern. Your app can use a similar technique.

The development server can retain log data in memory to help you test the use of this
API. In the Python server, you must enable this feature with the --persist_logs flag:

dev_appserver.py --persist_logs

You fetch log data by calling the fetch() function in the google.appengine.api.log
service module. The function takes query parameters as arguments:

include_app_logs

True if the log records returned should include application messages.

minimum_log_level

The minimum severity a request’s application log messages should have to be a
result. The value is an integer from 0 (debug) to 4 (critical), represented by con‐
stants named like logservice.LOG_LEVEL_INFO. The default is to return all
requests; specifying a log level limits the results to just those requests with appli‐
cation log messages at or above the specified level.

start_time

The earliest timestamp to consider as a Unix epoch time. The default is None, no
starting bound.

end_time

The latest timestamp to consider as a Unix epoch time. The default is None, no
ending bound.

version_ids

A list of version IDs whose logs to fetch. The default is None, fetch the calling
app’s version.

include_incomplete

If True, include incomplete requests in the results. (For more information, see
“Flushing the Log Buffer” on page 412.)

batch_size

The number of results to fetch per service call when iterating over results.

offset

The offset of the last-seen result, for paging through results. The next result
returned follows the last-seen result.

The function returns an iterable that acts as a stream of log results. Each result is an
object with attributes for the fields of the request data, such as method, resource, and
end_time. See the official documentation for the complete list of fields.

Querying Logs from the App | 411

www.it-ebooks.info

http://www.it-ebooks.info/

If application log messages are requested (include_app_logs=True), the app_logs
attribute of a result is a list of zero or more objects, one for each log message. The
attributes of this object are time (an epoch time), level (an integer), and message.

Here’s a simple example:

import time
from google.appengine.api import logservice

...
 self.response.write('<pre>')

 count = 0
 for req_log in logservice.fetch(include_app_logs=True):
 # Stop after 20 results.
 count += 1
 if count > 20:
 break

 self.response.write(
 '%s %s %s\n' %
 (time.ctime(req_log.end_time),
 req_log.method,
 req_log.resource))

 for app_log in req_log.app_logs:
 self.response.write(
 ' %s %s %s\n' %
 (time.ctime(app_log.time),
 ['DEBUG', 'INFO', 'WARNING',
 'ERROR', 'CRITICAL'][app_log.level],
 app_log.message))

 self.response.write('</pre>')

Each result includes an offset attribute, a web-safe string you can use to make a
“next page” button in a paginated display. Simply pass the offset of the last result on
a page to the fetch() function, and the first result returned will be the next result in
the sequence.

Flushing the Log Buffer
In the log fetch API, an “incomplete request” is a request that has not yet finished, but
may have written some messages to the log. The API lets you optionally fetch log data
for incomplete requests, such as to include the logged activity of a long-running task
in the log data.

Application log messages accrue in a log buffer. Typically, the contents of the buffer
are written to permanent log storage when the request handler exits. Because most

412 | Chapter 19: Managing Request Logs

www.it-ebooks.info

http://www.it-ebooks.info/

request handlers are short-lived, this is sufficient for capturing log data in real time.
For long-running request handlers (such as task handlers), you may wish to flush the
log buffer periodically to make log messages available to the fetch API.

To flush the log buffer manually, you can call the flush() function in the
google.appengine.api.logservice module:

from google.appengine.api import logservice

...
 logservice.flush()

You can also enable automatic log flushing for the duration of the request. To do this,
you modify global variables in the logservice module. To flush the logs after a cer‐
tain number of seconds:

 logservice.AUTOFLUSH_ENABLED = True
 logservice.AUTOFLUSH_EVERY_SECONDS = 10

To flush the logs after a certain number of bytes have been accrued in the buffer:

 logservice.AUTOFLUSH_ENABLED = True
 logservice.AUTOFLUSH_EVERY_BYTES = 4096

To flush the logs after a certain number of lines have been accrued in the buffer:

 logservice.AUTOFLUSH_ENABLED = True
 logservice.AUTOFLUSH_EVERY_LINES = 50

You can combine these settings. The flush occurs after any limit is reached. To disable
a limit, set it to None.

Flushing the Log Buffer | 413

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20

Deploying and Managing Applications

Uploading your application to App Engine is as easy as clicking a button or running a
command. All your application’s code, configuration, and static files are sent to App
Engine, and seconds later your new app is running.

Easy deployment is one of App Engine’s most useful features. You don’t have to worry
about which servers have which software, how servers connect to services, or whether
machines need to be rebooted or processes restarted. Other than your developer
account, there are no database passwords to remember, no secret keys to generate,
and no need to administer and troubleshoot individual machines. Your application
exists as a single logical entity, and running it on large-scale infrastructure is as easy
as running it on your local computer.

App Engine includes features for testing a new version of an app before making it
public, reverting to a previous version quickly in case of a problem, and migrating the
datastore and service configuration for the app from one version to another. These
features let you control how quickly changes are applied to your application: you can
make a new version public immediately to fix small bugs, or you can test a new ver‐
sion for a while before making it the version everyone sees.

Service configuration is shared across all versions of an app, including datastore
indexes, task queues, and scheduled tasks. When you upload the app, the service con‐
figuration files on your computer are uploaded as well, and take effect immediately
for all app versions. You can also upload each configuration file separately. This is
especially useful for datastore indexes, as new indexes based on existing entities take
time to build before they are ready to serve datastore queries.

Notice that service configuration is separate from the application configuration,
which includes URL mappings, runtime environment selection, and inbound service
activation. Application configuration is bound to a specific app version.

415

www.it-ebooks.info

http://www.it-ebooks.info/

App Engine provides rich facilities for inspecting the performance of an app while it
is serving live traffic. Most of these features are available in the Cloud Console,
including analytic graphs of traffic and resource usage, and browsable request and
message logs. You can also use the Console to inspect and make one-off changes to
datastore entities.

You also use the Cloud Console to perform maintenance tasks, such as giving other
developers access to the Console, changing settings, and setting up a billing account.

In this chapter, we discuss how to upload a new app, how to update an existing app,
and how to use App Engine’s versioning feature to test a new version of an app on
App Engine while your users continue to use the previous version. We look at how to
migrate the datastore and service configuration from one version to another. We also
look at features of the SDK and the Cloud Console for inspecting, troubleshooting,
and analyzing how your live application is running. And finally, we discuss other
application maintenance tasks, billing, and where to get more information.

Uploading an Application
We introduced uploading an application way back in Chapter 2, but let’s begin with a
brief review.

You can upload the app with the AppCfg command-line tool from the SDK. The tool
takes the update action and a path to your application root directory (the directory
containing the app.yaml file):

appcfg.py update clock

Using Versions
The upload tool determines the application ID from the appropriate configuration
file. This is the application element in the app.yaml file.

The tool also uses this file to determine the version ID to use for this upload, from the
version element. If App Engine does not yet have a version of this app with this ID,
then it creates a new version with the uploaded files. If App Engine does have such a
version, then it replaces the existing version. The replacement is total: no remnants of
the previous version’s code or static files remain. The new app has only the files
present in the project directory on your computer at the time of the upload. Of
course, data stored by the services for the app remain, including the datastore, memc‐
ache, log data, and enqueued tasks.

The version of the app that is visible on your app’s primary domain name—either
app-id.appspot.com or your custom domain—is known as the default version. When
you upload your app for the first time, the initial version becomes the default version

416 | Chapter 20: Deploying and Managing Applications

www.it-ebooks.info

http://www.it-ebooks.info/

automatically. If you subsequently upload a version with a different version ID, the
original version remains the default until you change the default using the Cloud
Console.

Recall from Chapter 3 that each version has its own appspot.com URL that includes
the version ID as well as the application ID:

 version-id.app-id.appspot.com

Remember that there are no special protections on the version
URLs. If the app does not restrict access by using code or configu‐
ration, then anyone who knows an unrestricted URL can access it.
If you don’t want a user to be able to access a version other than the
default, you can check the Host header in the app and respond
accordingly. You can also upload the nondefault version with con‐
figuration that restricts all URLs to administrators. Be sure to
upload it again with the real configuration before making it the
default version.

When you replace an existing version by uploading the app with that version ID, App
Engine starts using the uploaded app for requests for that version within seconds of
the upload. It is not guaranteed that every request after a particular time will use the
new code and static files, but it usually doesn’t take more than a few seconds for the
App Master to update all the frontend servers. (It can take longer for apps with many
instances and long warmup requests, as App Engine waits for new instances to be
ready before diverting traffic from the previous version.) The App Master ensures
that all the files are in place on a frontend server before using the new files to handle
requests.

If you upload the app with the same version ID as that of the version that’s currently
the default, your users will start seeing the updated app within a few seconds of
uploading. This is fine for small, low-risk changes that don’t depend on changes to
your data schemas or datastore indexes.

For larger changes, it’s better to upload the app with a new version ID (in the applica‐
tion configuration file), test the app with the version URL, then switch the default
version to direct traffic to the new version. To switch the default version, go to the
Cloud Console, Compute, App Engine, then select the Versions panel. Select the
radio button next to the desired version, and then click the “Make default” button.
This is shown in Figure 20-1.

Using Versions | 417

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 20-1. The Versions panel in the Cloud Console

App Engine can host up to 60 different version IDs per app at one time, across all
modules. You can delete unused versions from the Cloud Console by clicking the
Delete button on the appropriate row.

Many actions in the Cloud Console refer to a specific version of the app, including
usage statistics and the log viewer. You can control which version you’re looking at by
selecting it from the drop-down menu in the top-left corner of the screen, next to the
application ID. The version ID only appears as a drop-down menu if you have more
than one version of the app.

Instead of updating the default version in Cloud Console, you can do this via the
appcfg.py set_default_version command. This makes it easy to include this last
step in your automated deployment workflows:

appcfg.py set_default_version --application=myapp --version=rel-20141231

418 | Chapter 20: Deploying and Managing Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Service Configuration
All versions of an application use the same services. Service configuration and appli‐
cation data are shared across all versions of the app.

An app can have several service-related configuration files:

index.yaml
A description of all the required datastore indexes

queue.yaml
Configuration for task queues

cron.yaml
The schedule for scheduled tasks (cron jobs)

Whenever you upload the app, these configuration files are uploaded from your com‐
puter to the services and take effect for the entire app, replacing any configuration
that was once there. This is true regardless of whether the app version ID is new or
already exists, or whether the version ID is the default.

You can update the configuration for each service without uploading the entire app
by using the AppCfg tool. To update just the index configuration, use the
update_indexes action, with the project directory (e.g., app-dir):

appcfg.py update_indexes app-dir

To update just the task queue configuration, use update_queues:

appcfg.py update_queues app-dir

And to update just the pending task schedule, use update_cron:

appcfg.py update_cron app-dir

App Engine Settings
There are various App Engine–specific settings for projects that are important but
don’t justify their own entry in the sidebar nav. You can find these in the Settings
panel, under Compute, App Engine. This panel has multiple tabs to further organize
these settings.

Under the Application Settings tab, you’ll find your daily budget. This is where you
set the maximum daily expenditure that you want to allow for the application. If the
app ends up consuming resources whose cost is covered by the full amount, App
Engine stops serving the app to avoid charging you more than you’re willing to
spend. This is a safety catch. Once you have an idea of how much your app’s resource
usage costs during a typical day, it’s best to add a significant amount to this for your
budget to accommodate unexpected traffic.

Managing Service Configuration | 419

www.it-ebooks.info

http://www.it-ebooks.info/

The “Google login cookie expiration” time is the amount of time a user signed in with
a Google account will remain signed in. If the user signs in to your app, he will not
have to sign in again from the computer he is using until the expiration time elapses.

The “Google authentication” setting refers to how Google account authentication
works for apps running on a Google Apps domain. When set to “Google Accounts
API,” all Google users can sign in, and it’s up to the app to decide which user is
authorized to perform certain actions. When set to “Google Apps domain,” only Goo‐
gle accounts on the domain are allowed to sign in, and other domain account man‐
agement policies apply.

This is also where you set the amount of log data to retain for the app. If you retain
more than the default 1 GB, you may be billed for additional storage. See Chapter 19.

The Settings panel also provides the Custom Domains tab, which you can use for set‐
ting up a domain name for the app. (Refer back to “Domain Names” on page 62.)

Managing Developers
When you register an application ID, you become a developer for the application
automatically. You can invite other people to be developers for the application from
the Permissions section of the Cloud Console. (This is a project-wide panel, under
the project name.)

To invite a developer, click the Add Member button, then enter the person’s email
address in the dialog that opens. You can select from several levels of access, includ‐
ing ownership, edit-only privileges, or read-only privileges.

App Engine sends an email to the developer inviting her to set up an account. If the
email address you invited is for a Google account, the developer can use the existing
account to access App Engine, although she must still accept the invitation by clicking
on a link in the invitation email message. If the email address does not have a corre‐
sponding Google account, the developer can create a Google account for that address
by following the instructions in the message. The developer cannot accept the invita‐
tion from a Google account with a different address; you must invite the alternative
address explicitly.

An invited developer who has not yet accepted the invitation appears in the list with a
status of “Pending.” After the developer accepts the invitation, she appears with a sta‐
tus corresponding to her level of access.

You can remove any developer from the list by clicking the Remove button for the
developer. The developer loses all access immediately. You can also adjust the permis‐
sion level from this screen.

420 | Chapter 20: Deploying and Managing Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Developers with view permissions can see the Console for the project, but cannot
make changes or deploy code. Developers with edit permissions can do everything
except manage project permissions for other people, billing, and disabling or deleting
the app. Edit access includes deploying new versions, changing the default version,
accessing logs, and inspecting and tweaking the datastore. All developers, including
read-only developers, can access application URLs configured as administrator-only,
and are recognized by the Users API as adminsitrators.

Quotas and Billing
The Cloud Console provides a detailed summary of the App Engine resources your
project is using via the App Engine “dashboard.” You can locate this dashboard in the
sidebar navigation: Compute, App Engine, Dashboard. This handy screen provides a
visual overview of your app’s traffic, resource usage, and errors.

The topmost chart displays time-based data over the past 24 hours. You can select
from several data sets to view via the drop-down menu, including requests per sec‐
ond, clock time or CPU time per request, bandwidth, errors, and quota denials. You
can adjust the period for this chart by clicking on the buttons (such as “6 hr”).

Below the chart is a graph showing how much of the billable quotas have been con‐
sumed for the calendar day, and how much of your daily budget has been spent for
each quota. A message at the upper-right of the chart indicates how much of the cal‐
endar day is remaining. If any of the bars look like they might fill up before the next
reset, you may need to increase your budget for that quota to avoid quota denials.

Near the bottom of the dashboard are lists of popular URL paths and URLs that are
returning errors. You can click on a URL to view the detailed request logs for that
URL path.

The dashboard’s time-based chart and URL traffic lists show data for the version of
the app selected by the drop-down menu in the upper-left corner of the screen. When
you first sign in to the Console, the default version is selected. To view data for a dif‐
ferent version of the app, select it from the drop-down menu.

You can view a more comprehensive chart of how the app is consuming resources
with quotas from the Quota Details section of the Cloud Console. This chart shows
billable quotas as well as several fixed quotas, such as API calls and service band‐
width. If your app is having quota-denial errors, check this screen for information on
how the app is consuming resources.

The resource usage chart on the dashboard and the quota details screen show the
total of all resource usage for all versions of the app. All versions of an app share the
same budget and quotas.

Quotas and Billing | 421

www.it-ebooks.info

http://www.it-ebooks.info/

When your app is ready to outgrow the free quotas, you can set a budget for addi‐
tional resources. App Engine allocates more resources as needed according to the
budget you establish, and you are only billed for the resources actually consumed.

You probably set up a billing account when you created the project. If you need to
adjust which account is associated with the project select the Billing & Settings panel
in the Cloud Console. The owner of the billing account is solely responsible for set‐
ting the budget and paying for resources consumed.

Getting Help
If you have questions not answered by this book, you may find your answers in the
official documentation on Google’s website:

https://cloud.google.com/appengine/

The documentation includes complete references for the APIs and tools for the
Python runtime environment; a list of frequently asked questions and answers (the
FAQ); and a large collection of articles describing best practices, interesting features,
and complete working examples.

You may also want to browse the contents of the App Engine libraries as installed by
the Cloud SDK. The source code for the Python SDK serves as supplementary docu‐
mentation, and includes several undocumented (and unsupported) features and
extensions. The SDK also includes a set of functional example applications.

All App Engine developers should subscribe to Google’s App Engine downtime mail‐
ing list. This low-traffic, announcement-only list is used by the App Engine team to
announce scheduled times when services are taken down for maintenance, and also
to report the status of unexpected problems:

http://groups.google.com/group/google-appengine-downtime-notify

You can check the current and past health of App Engine and its services by consult‐
ing the system status site:

https://code.google.com/status/appengine

422 | Chapter 20: Deploying and Managing Applications

www.it-ebooks.info

https://cloud.google.com/appengine/
http://groups.google.com/group/google-appengine-downtime-notify
https://code.google.com/status/appengine
http://www.it-ebooks.info/

By far the best place to ask questions about Google App Engine is Stack Overflow.
Post your question with the google-app-engine tag, and it’ll be seen by the App
Engine developer community, as well as the App Engine team at Google. As you learn
more, you can answer other people’s questions and build your reputation as an App
Engine expert. You can also use Google to search through past answers, which may
have what you’re looking for:

http://stackoverflow.com/questions/tagged/google-app-engine

If you believe you have found a bug in App Engine, the SDK, or the Cloud Console,
or if you have a feature you’d like to request, you can post to the App Engine issue
tracker. You can also see features others have requested, and vote for your favorites.
(The App Engine team does indeed consider the highly requested features in this list
when determining the product road map.)

http://code.google.com/p/googleappengine/issues/list

Google has a general discussion group for App Engine developers and an IRC chan‐
nel, and also does regular live-streamed video question-and-answer sessions with the
team. This page has more information on community resources:

https://cloud.google.com/appengine/community

Getting Help | 423

www.it-ebooks.info

http://stackoverflow.com/questions/tagged/google-app-engine
http://code.google.com/p/googleappengine/issues/list
https://cloud.google.com/appengine/community
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols
!= (not equal) operator, 147, 150, 172, 186
character, 53
* (asterisk), 56, 119, 309
** (double asterisk), 138
-dot-, 68, 118
. (dot), 25, 46, 56, 64, 68, 118
.* pattern, 24, 42
.yaml files, 120
/ (forward slash), 56, 119
/.* (catchall pattern), 57, 79
404 Not Found Error, 51
500 generic error, 84
< operator, 147, 150, 158
<= operator, 147, 150, 158
= (equality) operator, 158
== (equality) operator, 147, 150
> operator, 147, 150, 158
>= operator, 147, 150, 158
@ (at) symbol, 309, 314, 316
@csrf_exempt decorator, 399
@db.transactional() decorator, 202
@ndb.transactional() decorator, 203-212, 350
[] (square brackets), 135

A
abstractions

datastore as, 5, 126
instances as, 81
request handler, 92
runtime environment as, 4

access, restricting, 54, 417
Activation policy, 264
allocate_ids() method, 141

ancestor paths, 137
ancestors

ancestor paths, 195, 197
ancestor queries, 199
kindless queries and, 164
root ancestors, 197

AND clauses, 148
Apache Combined logfile format, 409
App Engine Python, 19, 21
app masters, 52
app.yaml file, 23
appcfg.py command

adjusting instance number with, 120
appcfg.py delete_version, 121
appcfg.py request_logs, 409
appcfg.py set_default_version, 418
appcfg.py stop_module_version, 120
appcfg.py update, 46, 114
appcfg.py update counter.yaml, 124
appcfg.py update_cron, 360, 419
appcfg.py update_dispatch, 119
appcfg.py update_indexes, 249, 419
appcfg.py update_queues, 335, 419
appcfg.py vacuum_indexes, 249
deleting versions with, 55
downloading logs with, 407
instance shutdown with, 110
managing versions with, 109
uploading apps with, 416

application exceptions, 406
(see also warning messages)

application IDs, 54
applications, configuring, 49-80

access restrictions, 54

425

www.it-ebooks.info

http://www.it-ebooks.info/

App Engine architecture, 50
app IDs, 54
authorization with Google accounts, 71
built-in handlers, 78
configuring Python apps, 52
custom error responses, 74
domain names, 62
environment variables, 72
Google Apps service, 64-67
inbound services, 73
includes directive, 79
multithreading, 55
overview of, 49
request handlers, 55
secure connections, 67-71
static and resource files, 58-62
version identifiers, 54

applications, creating, 17-48
Cloud SDK setup, 17-21
development, 21-44
enabling billing, 48
overview of, 17
registration, 45
testing, 46
uploading, 45

applications, deploying and managing, 415-423
accessing metadata from, 249-253
App Engine-specific settings, 419
benefits of Google App Engine for, 415
command-line tools for, 18
getting help, 422
managing developers, 420
quotas and billing, 421
service configuration, 419
uploading apps, 416
using versions, 416

AppStats, 375-382
installing, 378
parts of, 377
using the console, 380
visualizing calls with, 375

arguments, in property classes, 235
asterisk (*), 56, 119, 309
asynchronous calls, 363-375

benefits of, 363
callbacks, 372
datastore transactions, 367
email messages, 301
example of, 365

future objects returned by, 365
in Python, 366
memcache, 369
multiple, 375
nested functions, 374
process of, 364
Python Blobstore API, 370
URL Fetch service, 371
vs. synchronous calls, 365

at (@) symbol, 309, 314, 316
atomic transactions, 205
attachments, to email messages, 304
authentication, 420
authorization, 71
automatic batching, 238
automatic caching, 239-243

benefits of, 239
ignoring, 243
setting cache policy, 241

automatic indexes
greater- and less-than filters, 160
kindless queries, 164
queries for all entities of a kind, 158
queries for one equality filter, 159
queries for one sort order, 161
queries on keys, 163
queries satisfied by, 158

automatic scaling, 97
automatic values, 220

B
backend services, accessing via endpoints, 116
background threads, 112, 123
base values, 233
bash shell, 19
basic scaling, 105, 108
batch calls, 284
batching, automatic, 238
BigTable, 205
billing

enabling, 48, 88
minimizing costs, 97, 102
quotas and limits, 87, 421
resident instances and, 101

Blobstore API, 370
bounce messages, 303
bound methods, 373
budgets, setting, 88
built-ins directive, 78

426 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

bytecode format, 91
bytes, 133

C
caching

automatic, 239-243
cache hits/misses, 278
cache policies, 241
configuring expiration, 60
distributed, 239
frontend caches, 5
in-context, 239
strategies used, 239
write-behind, 107

callbacks, 372
CAS ID, 284
catchall pattern (/.*), 57, 79
certificate authority (CA), 69
chat (see instant messages)
child/parent associations, 197, 227
Chrome Incognito, 66
clock application example, 22-26
closures, 374
Cloud Console

accessing metadata, 249-253
application registration, 45
browsing logs in, 405
custom domain names, 63, 69, 118
datastore inspection, 245
deleting versions via, 121
index management, 248
inspecting instances with, 102
managing versions in, 417
memcache administration, 287
monitoring quotas with, 84, 421
overview of, 15
performing queries from, 153
querying index status, 252
task queue administration, 356

Cloud Datastore
benefits of, 126
datastore entities, 125-142
datastore queries, 143-191
datastore transactions, 193-212
inspecting, 42
overview of, 5-9
Python interface for, 38-39
quotas and limits, 88
vs. traditional databases, 143

Cloud SDK
authenticating, 20
downloading, 16
installing, 19
installing App Engine SDK, 21
setup, 17-21

cloud_env.bat script, 20
command-line tools, for Cloud SDK setup, 18
Common Gateway Interface (CGI), 90, 407
compare and set operation, 283
comparison operators, 150
computed properties, 225
concurrency control, 196, 201
concurrent requests, 31, 101
concurrent transactions, 195
ConfigureRemoteApi() function, 257
consistency, strong vs. eventual, 194
consumers, 332
contention, 196
context objects, 242
could not initialize images API message, 26
count() method, 154
countdowns, 339
CPython, 91
cron jobs, 13

(see also scheduled tasks)
cross-group transactions, 195, 211
cross-site request forgery (CSRF), 399
cursors (see query cursors)
custom error responses, 74
custom indexes

queries for multiple sort orders, 165
queries on multiple properties, 166
queries satisfied by, 165
queries with multiple equality filters, 169

D
data modeling, 213

(see also ndb data modeling library)
datastore administration, 245-257

accessing metadata, 249-253
inspecting the datastore, 245
managing indexes, 248
remote controls, 253-257

datastore entities
allocating system IDs, 140
deleting, 140
development server and, 142
entity groups and, 195-200

Index | 427

www.it-ebooks.info

http://www.it-ebooks.info/

getting properties of, 139
inspecting entity objects, 138
keys and key objects, 135
multivalued properties, 134
overview of, 126
properties and kinds in, 6
property values, 132
Python Datastore API, 128-131
reading, 208
retrieving multiple, 138
retrieving using keys, 137
retrieving via queries, 144
saving, 139
saving multiple objects, 140
strings, text and bytes, 133
unset vs. null value, 134, 173
updating, 139, 195, 205, 208
vs. relational database concepts, 128

datastore models
benefits of, 126
using ndb library, 213-243
web forms and, 38-39

datastore queries, 143-191
indexes, automatic, 158-165
indexes, custom, 165-172
indexes, overview of, 156
multivalued properties and, 175-182
not-equal and IN filters, 172
parts of, 144
projection queries, 186
purpose of kinds in, 144
Query API, 145-155
query cursors, 182
query results and keys, 144, 155
sort orders and value types, 174
unset and nonindexed properties, 173
updates and, 146
vs. traditional databases, 143

datastore transactions, 193-212
batch updates, 208
concurrent, 195
consistency of, 194
cross-group transactions, 195, 211
data integrity and, 193
entity groups, 194-200
eventually consistent reads, 201
examples of, 193
in Python, 202
overview of, 200

parent/child associations, 197
reading entities, 208
service call optimization, 367
speed of, 194
timeline of, 205
transactional reads, 201
updating entities, 205
updating entities/entity groups, 195
updating indexes, 209

Datastore Viewer, 42
Daylight Saving Time (DST), 361
default version, 416
deployment limits, 85
developer invitations, 66, 420
developer tools, 14
development server console, 42, 113, 142
dev_appserver.py command, 21, 24
diamond inheritance pattern, 229
disk seek, 277
dispatch rules, 119
distributed memory cache, 239, 277
Django web framework

app creation, 389
benefits of, 90, 384
project connection, 387
project creation, 386
using bundled library, 385
using ndb with, 392
using templates, 391
using with Google Cloud SQL, 401
versions available, 386, 400

documentation, 422
Domain Name Service (DNS) hosting, 62
domain names, 62, 69, 118
dot (.), 25, 46, 56, 64, 68, 118
double asterisk (**), 138
dynamic instances, 100
dynamic properties, 215

E
email messages, 299-311

architecture of incoming, 300
attachments, 304
bandwidth quota use, 301
bounce messages, 303
custom sender addresses, 303
process of sending, 301
receiving, 308
recipient addresses, 304

428 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

sender addresses, 302
sending, 305
sending from development server, 302
uses for, 299
vs. HTTP requests, 299

empty lists, 135
endpoints, 116
enqueuing, 332, 335, 346
entities (see datastore entities)
entity groups, 194-200, 253
entity IDs, 127
environment variables, 72, 91
equality (=) operator, 158
equality (==) operator, 147, 150
equality filters

multivalued properties and, 177
queries with multiple, 169

error messages, 74, 321
(see also warning messages)

ETAs (earliest time of availability), 339
eventual consistency, 194, 201, 349
exceptions, 406

(see also warning messages)
expiration times, 241, 420
exploding indexes, 182
exponential backoff method, 345

F
fault tolerance, 344
fetch() method, 153
FileSystemLoader constructor, 32
filters

applying, 147
applying in Query panel, 247
comparison operators, 150
equality, 169
IN filters, 172
inequality, 168
not-equal, 172

Flush Cache button, 43
forward slash (/), 56, 119
frameworks, 26, 90
frontend

authorization through, 71
caching, 5
configuring, 49
web vs. mobile modules, 106

full-stack frameworks, 90
full-text search, 10

future objects, 365

G
gcloud command

gcloud -h, 20
gcloud auth list, 20
gcloud auth login, 20, 46
gcloud auth revoke, 20
gcloud components, 21
gcloud components list, 21
gcloud components update, 21
gcloud components update gae-python, 21
gcloud config list, 46
gcloud config set account, 20
gcloud config set project, 46
gcloud sql commands, 259-276
overview of, 18

get() method, 27
getattr() function, 138
getting help, 422
get_current_instance_id() function, 122
get_current_module_name() function, 122
get_current_version_name() function, 122
get_default_version() function, 122
get_hostname() function, 117, 122
get_modules() function, 122
get_num_instances() function, 122
get_versions() function, 122
global cache policies, 242
GMail, 64, 303
Google accounts

authorization with, 71, 420
integration with App Engine, 11
project limitations, 87
user preferences pattern, 22, 28

Google App Engine
architecture, 50
benefits of, xii
best use for, 1
costs, 48, 87, 97, 101, 102, 419
design goals, 332
developer invitations, 66, 420
developer tools, 14
documentation, 422
Engine-specific project settings, 419
frontend, 49
frontend caches, 5
history of, xiii
integration with Google accounts, 11

Index | 429

www.it-ebooks.info

http://www.it-ebooks.info/

major parts of, 2
namespaces, 14
overview of, xii
request handlers, 21
runtime environment, 2
services, 9-11
static file servers, 4
support for OAuth, 12
task queues, 12
vs. traditional web hosting, 1
vs. web application frameworks, 383

Google Apps, 64-67
Google authentication, 420
Google Cloud Endpoints, 12, 116
Google Cloud Platform

benefits of, xii, 1
data storage choices, 5, 125
overview of, xi

Google Cloud SQL, 259-276
backup and restore, 274
benefits of, 259
choosing an instance, 260
connecting to an instance, 265
costs, 260
creating an instance, 263
database connection, 269-274
database setup, 267
exporting and importing data, 274
gcloud sql commands, 275-276
installing MySQL locally, 261
installing MySQLbd library, 262
using with Django, 401
vs. Cloud Datastore, 10

Google Cloud Storage, 10
Google Compute Engine, xiii
Google Docs, 64
Google Drive, 64
Google Hangouts, 64
Google login cookie expiration, 420
Google Managed VMs, xiv
google-cloud-sdk directory, 19
google.appengine.api module, 32
google.appengine.api.back ground_thread

module, 113
google.appengine.api.datastore module, 252
google.appengine.api.log service module, 411
google.appengine.api.mail module, 305
google.appengine.api.modules module, 121
google.appengine.api.urlfetch module, 75, 293

google.appengine.api.users module, 132
google.appengine.datastore.datastore_query

module, 184
google.appengine.ext module, 38
google.appengine.ext.deferred module, 356
google.appengine.ext.django.backends.rdbms

module, 402
google.appengine.ext.ndb module, 75, 132, 214,

367
google.appengine.ext.ndb.Expando module,

214
google.appengine.ext.ndb.meta data module,

251
google.appengine.ext.ndb.Model module, 214
google.appengine.ext.ndb.PolyModel module,

214
google.appengine.runtime.DeadlineExceede‐

dError message, 84
GoogleCloudSDKInstaller.exe, 19
GQL language, 149
gql() method, 149

H
handlers element, 56
hasattr() function, 138
help, obtaining, 422
high replication datastore, 126
hooks, shutdown, 111, 122
HRD (HR datastore), 126
HTML messages, 301
HTTP 404 Not Found error, 51
HTTP 500 generic error, 84
HTTP requests, 294
httplib module, 292
HTTPS connections, 65, 67, 118, 296

I
idempotent tasks, 344
idle instances, 99
IN operator, 147, 150, 172
in-context cache, 239
inbound services, 73
includes directive, 79
indexes

automatic for simple queries, 158-165
Cloud Datastore vs. traditional, 143
configuration file, 157
configuring, 189
custom for complex queries, 165-172

430 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

drawbacks of, 143, 157
entity groups and, 195
exploding, 182
in Cloud Datastore, 7
managing, 248
overview of, 156
querying status of, 252
speed of, 156
updating, 209

inequality filters
multivalued properties and, 178
rules of, 168

inequality operators, 147, 150
inheritance, 227
initialization tasks, 99
instances, 95-104

allocation of, 100
defining with modules, 105
dynamic nature of, 96
inspecting, 103
instance classes and utilization, 101, 109
instance hours, 97, 102
Instances Console Panel, 102
multithreading and, 81, 96
overview of, 51, 81
Python runtime environment and, 91
request handling with, 95
resident instances, 99, 110
scheduling and latency, 97
setting number of, 109
shutdown hooks, 111
shutting down manually, 103
starting and stopping, 120
startup requests, 110
traffic splitting, 104
warmup requests, 98

Instances panel, 42
instant messages, 313-329

vs. email messages, 313
handling commands over chat, 320
handling error messages, 321
managing presence, 322-329
presence status, 315
receiving chat messages, 318-321
sending, 314
sending chat invitations, 315
sending chat messages, 316
XMPP-compatibility, 313

Interactive Console, 44

Internet domain registrar, 62
iterable objects, 154

J
JetBrains PyCharm, 18
JID (Jabber ID), 314
Jinja2 templating system, 28
junk mail, 301

K
key names, 39
key objects, 136
keys

adding and replacing values, 281
deleting, 282
entities and, 126
getting values with, 281
key-value pairs, 279
keys-only queries, 155
locking, 282
overview of, 135
queries on, 163
retrieving entities via, 137, 144
root ancestors and, 197
storing as property values, 226

kindless queries, 164
kinds, 144

L
latency, 97
launcher application, 18
leases, 332
libraries, 28, 75-77, 91
limits (see quotas and limits)
lists, empty, 135
literal characters, 56
load balancing, 50, 116
loading requests, 99
log level, 405
logging module, 406
login cookie expiration, 420
login element, 72

M
manual scaling, 105, 108
master tasks, 351
matching, 56
maximum idle instances, 101

Index | 431

www.it-ebooks.info

http://www.it-ebooks.info/

maximum pending latency, 98
memory cache (memcache), 277-289

adding and replacing values, 281
administration, 287
atomic increment and decrement, 282
avoiding stale values in, 278
batching calls to, 284
benefits of, 277
calling from Python, 279
compare and set, 283
deleting values, 282
flushing, 289
gathering statistics, 288
getting values, 281
key-value pairs in, 279
locking keys, 282
overview of, 277
preferences data storage, 43
service call optimization, 369
setting value expiration, 280
setting values, 280
storing/retrieving values, 279
vs. datastore, 9

message headers, 301
messages (see email messages; instant messages;

warning messages)
metadata, accessing, 249-253

entity group versions, 253
index status, 252
querying metadata, 251
querying statistics, 250

middleware, 399
MIME types, 60
minimum idle instances, 100
minimum pending latency, 98
mobile frontend module, 106
model inheritance, 227

(see also ndb data modeling library)
modules

addressing with URLs, 115-118
always-on example, 123
background threads, 112, 123
benefits of, 105
calling from other modules, 116
configuring, 107
creating multiple versions of, 109
defining, 107
deploying, 114
deploying multiple, 114

development servers and, 113
dispatching requests to, 119
example layout, 106
managing and deleting, 120
managing versions of, 120
manipulating, 122
manual and basic scaling declarations, 108
programmatic access to, 121
shutdown hooks, 111
starting and stopping, 120
starting and stopping versions, 122
startup requests, 110, 123
URLs and custom domains, 118
URLs and secure connections, 118

MS (master/slave) datastore, 126
multithreading

concurrent requests and, 31
instances and, 81, 96
latency and scheduling, 97
threadsafe declaration, 55

multivalued properties, 175-182, 221
benefits of, 175
in code, 175
efficiency of, 128
and equality filters, 177
and exploding indexes, 182
and inequality filters, 178
overview of, 134
and query planner, 181
and sort orders, 180

multiversion concurrency control, 201
MVPs (see multivalued properties)
MySQL database, 10, 261
MySQLdb library, 262

N
namespaces, 14
NCSA Combined logfile format, 409
ndb data modeling library, 213-243

automatic batching, 238
automatic caching, 239-243
creating property classes, 231-238
model inheritance, 227
modeling relationships, 226
models and properties, 214
process of data modeling, 213
property declarations, 216-226
queries and PolyModels, 229
using with Django, 392

432 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

using WTForms with, 393-400
ndb.BlobProperty class, 217, 220, 222
ndb.BooleanProperty class, 217
ndb.DateProperty class, 217, 220
ndb.DateTimeProperty class, 217, 220
ndb.Expando class, 133, 148, 165, 177, 213, 214,

215, 220
ndb.FloatProperty class, 217
ndb.GenericProperty class, 217, 222
ndb.gql() function, 149
ndb.IntegerProperty class, 217
ndb.JsonProperty class, 223
ndb.KeyProperty class, 217, 226, 227
ndb.LocalStructuredProperty class, 225
ndb.Model API, 174
ndb.Model class, 165, 214, 215, 216
ndb.Model superclass, 214
ndb.PickleProperty class, 223
ndb.PolyModel class, 38, 214, 229, 230
ndb.stats module, 165
ndb.StringProperty class, 216, 220, 231
ndb.TextProperty class, 217, 220
ndb.TimeProperty class, 217, 220
ndb.UserProperty class, 217, 221
nested functions, 374
nonindexed properties, 173, 219
not equal (!=) operator, 147, 150, 186
not-equal filters, 172
null value, 134, 173

O
OAuth, 12
object databases, 126
OpenID providers, 11
openssl command, 70
optimistic concurrency control, 8, 196
OR clauses, 148
os.environ command, 91
os.getcwd() value, 32

P
parameter substitution, 152
parent/child associations, 197, 227
paths, 197
pattern matching, 56
pay-per-use model, xi
payloads, 337
pending latency, 98
pending queue, 98

PHP SDK, 21
plain text messages, 301
polymorphic queries, 229
populate() method, 139
post() method, 27
presence, 322-329

broadcasting change in, 327
definition of term, 322
managing presence updates, 325
managing subscriptions, 323
presence probe messages, 328
presence show values, 325
status messages, 325
subscribe/unsubscribe messages, 322

primary keys, 39
processing rate, 342
producers, 332
productivity applications, 64
project IDs, 45, 54, 127
project limits, 87
projection queries, 186
properties

computed, 225
declaring, 216-226
dynamic, 215
listing, 139
multivalued, 134, 175-182, 221
in ndb data modeling library, 214
nonindexed, 173, 219
parts of, 6, 127
property descriptors, 216
repeated (see multivalued properties)
serialized, 222
static, 215
structured, 224
unset vs. null value, 134, 173

property classes, creating
accepting arguments, 235
implementing automatic values, 236
marshaling value types, 233
overview of, 231
validating property values, 231

property declarations
automatic values, 220
computed properties, 225
models and schema migrations, 226
nonindexed properties, 219
overview of, 216
property validation, 217

Index | 433

www.it-ebooks.info

http://www.it-ebooks.info/

property value types, 216
repeated properties, 221
serialized properties, 222
structured properties, 224

property names, 131
property values, 132, 246
proxies, 253
pull queues, 332, 345-348

adding tasks to (enqueuing), 346
best application of, 345
building, 346
leasing and deleting tasks, 346
producers/consumers in, 345
retrying, 347

push queues, 332, 340
controlling task requests, 340
processing rate of, 342
request handlers and, 340
retrying tasks, 344

pushq, 345
put_multi() function, 140
Python

asynchronous calls in, 366-375
Cloud Datastore interface, 38-39
configuring apps, 52
Datastore API, 128-131
downloading, 18
installing, 18, 21
Interactive Console, 44
libraries, 75
libraries supporting URL Fetch, 292
package installation, 29
runtime environment, 90
runtime versions, 53
transactions in, 202-205
virtual environments, 34-38
web frameworks, 26

Python Interactive Console, 44
Python virtual environments, 34-38

Q
queries

ancestor, 199
complex, 165-172
entity groups and, 195
gathering metadata, 251

(see also metadata)
gathering statistics, 250
of index status, 252

indexes and, 7
multivalued properties and, 175-182
polymorphic, 229
projection, 186
service call optimization, 369
simple, 158-165

Query API, 145-155
AND/OR clauses, 148
applying filters, 147
applying multiple filters, 147
GQL language, 149
iterable objects in, 154
keys-only queries, 155
Query class, 146
retrieving results, 153
schemas in, 146

query cursors, 182
query planner, 181
quotas and limits, 84-90

billable quotas, 87, 419, 421
deployment limits, 85
determining values for, 84
list of free quota limits, 90
projects, 87
purpose of, 84
request size, 85
request timers, 84
service limits, 85
system-wide restrictions, 84
versions, 87

R
re module, 57
read policies, 195, 202
read replicas, 259
registering applications, 45
regular expressions, 56
relational databases, 126, 128, 143
remote controls, 253-257

benefits of, 253
remote shell tool, 255
setting up, 254
using from scripts, 256

request handlers, 81-94
built-in, 78
configuring, 55
definition of term, 21
dispatching requests to modules, 119
in webapp2 applications, 26

434 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

overview of, 49, 81
push queues and, 332, 340
request handler abstraction, 92
runtime environment and, 82-92
scheduled tasks and, 332
startup requests, 110
stateless behavior of, 125
traffic splitting, 104

request headers, 295, 341
request logs, 405-413

downloading logs, 409
flushing log buffers, 412
items included, 405
querying from apps, 410
retention of, 410
statistics included, 405
viewing logs, 407
writing to logs, 406

request scheduling, 97
request timers, 84
resident instances, 99, 110
resource budget, setting, 88
resource files, 60
resources, accessing, 422
response objects, 298
root entities, 197
RPC (remote procedure call) objects, 366
runtime environment, 82-92

App Engine architecture and, 51
functions of, 82
overview of, 2, 81
Python runtime environment, 90
quotas and limits, 84-90
sandbox restrictions, 83
using different simultaneously, 115
versions of, 53, 82

S
sandboxing, 3, 82-84
scalability

automatic scaling feature, 97, 105
definition of term, 1
manual vs. basic scaling, 105, 108
need for, xi
solutions for, xi
transactions and, 194

scam email, 301
scheduled tasks

architecture of, 333

benefits of, 358
configuring, 360
definition of term, 331
execution of, 359
parts of, 359
vs. push queues, 359
request handlers and, 332
specifying schedules, 361
validating, 360

schemas, 146, 213, 226
script elements, 57
SDK Shell, 20
Search service, 10
secure element, 68
Secure Socket Layer (SSL), 69, 296
security

connections in modules, 118
connections with custom domains, 69
cross-site request forgery (CSRF), 399
data sharing during multithreading, 55
restricting app access, 54, 417
SSL/TLS connections, 65, 67

self-invitation maneuver, 66
serialized properties, 222
Server Name Indication (SNI), 70
service call optimization, 363-382

asynchronous calls in Python, 366-375
asynchronous vs. synchronous calls, 364
callbacks, 372
techniques for, 363
visualizing calls with AppStats, 375-382

service configuration, 419
service limits, 85
setattr() function, 138
set_num_instan ces(count) function, 122
sharding, 197
shutdown hooks, 111, 122
site-packages directory, 36
sort orders, 174, 180
SQL instances, 10, 259
square brackets ([]), 135
SSL (Secure Socket Layer), 69, 296
SSL/TLS connections, 65, 67
StartSSL, 69
startup requests, 110, 123
start_version(module, version), 122
stateless vs. stateful, 125
static files

configuring, 58-62

Index | 435

www.it-ebooks.info

http://www.it-ebooks.info/

overview of, 4
static properties, 215
statistics, querying, 250
status messages, 325
stop_version(module, version), 122
strings, 133
strong consistency, 194
structured properties, 224
subscription, 322
symbolic links, 60
synchronous calls, 365
system IDs, 140

T
task chains, 351
task names, 338
task parameters

countdowns/ETAs, 339
payloads, 337
task names, 338
types of, 337

task queues
adding tasks to (enqueuing), 335
administration of, 356
architecture of, 333
benefits of, 331, 334
billable storage quota, 334
configuring, 334
deferring work, 356
example of, 331
mechanisms of, 332
overview of, 12
producers/consumers in, 332
pull queues, 345-348
push queues, 340-345
specifying alternate modules, 337
task chaining, 350
task parameters, 337-340
transactional task enqueueing, 348

tasks, definition of term, 331
TCP port 443, 68
templating systems, 28, 391
testing applications, 46
text searches, 10
text strings, 133
third-party libraries, 77, 91
threads, background, 112, 123

(see also multithreading)
threadsafe declaration, 55

throughput, 194
time-to-live (TTL), 241
timeouts, 241
TLS (Transport Layer Security), 69
token buckets, 342
tombstones, 338
traffic splitting, 104
transactional reads, 201
transactional task enqueuing, 348
transactions, 8, 193

(see also datastore transactions)
Transport Layer Security (TLS), 69

U
unset properties, 134, 173
upload elements, 59
uploading applications, 45
URL Fetch service

calling, 293
connection schemes supported, 294
customizing behaviors, 294
default behavior, 292
handling redirects, 297
HTTP over SSL (HTTPS), 296
outgoing HTTP requests, 294
overview of, 291
request and response sizes, 296
request deadlines, 297
request loop prevention, 295
response objects, 298
restrictions on, 291
service call optimization, 371

URL paths, 55, 294
urllib module, 292
urllib2 module, 292
user account systems, 22, 28
user preferences pattern, 22
user values, 233
Users service, 28
utilization, 101

V
value types, 174
values

adding and replacing, 281
atomic increment and decrement, 282
compare and set operation, 283
deleting, 282
getting, 281

436 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

key-value pairs, 279
setting, 280
setting expiration of, 280

version identifiers, 54, 416
version limits, 87
version parameter, 109
virtual environments, 34-38
Virtual IP (VIP), 70

W
warmup requests, 98
warning messages

Could not initialize images API, 26
google.appengine.runtime.DeadlineExcee‐

dedError, 84
web application frameworks, 383

(see also Django web framework)
web applications, definition of term, 1

(see also applications)
web forms, 40-42
web frameworks, 26, 90

Web Server Gateway Interface (WSGI), 24, 56,
90

webapp2 application framework, 24, 26
webfrontend module, 106
wildcard character (see asterisk)
write-behind caches, 107
WSGI (Web Server Gateway Interface), 24, 56,

90
WSGIApplication class, 27
WTForms, 393-400

X
XG transactions, 195
XMPP service (see instant messages)

Y
YAML file format, 24

Z
ZIP archive, 86

Index | 437

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Dan Sanderson is a software engineer at Google. He has worked in the web industry
for over 15 years as a software engineer and technical writer for Google, Amazon, and
the Walt Disney Internet Group. He lives in Seattle, Washington. For more informa‐
tion about Dan, visit his website at http://www.dansanderson.com.

Colophon
The animal on the cover of Programming Google App Engine with Python is a four-
lined snake (Elaphe quatuorlineata), found mainly in Italy and the Balkan Peninsula.

This creature’s name derives from four dark stripes that extend from the eye to the
corner of its mouth. These lines become more prominent as the snake matures.
Adults are light brown with white bellies, and can grow to be as long as 8.5 feet. This
gives it the distinction of being Europe’s largest nonvenomous species from the Colu‐
bridae family, which encompasses two-thirds of all living snake species.

The four-lined snake occupies a variety of habitats, primarily woodland areas and
bushes in rocky areas. Rodents account for most of its diet, as well as lizards and
small birds.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://www.dansanderson.com
http://animals.oreilly.com
http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	A Brief History of App Engine
	Using This Book
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introducing Google App Engine
	The Runtime Environment
	The Static File Servers
	Frontend Caches
	Cloud Datastore
	Entities and Properties
	Queries and Indexes
	Transactions

	The Services
	Google Accounts, OpenID, and OAuth
	Google Cloud Endpoints
	Task Queues and Cron Jobs
	Namespaces
	Developer Tools
	The Cloud Console
	Getting Started

	Chapter 2. Creating an Application
	Setting Up the Cloud SDK
	Installing Python
	Installing the Cloud SDK
	Authenticating with the Cloud SDK
	Installing the App Engine SDK

	Developing the Application
	The User Preferences Pattern
	A Simple App
	Introducing the webapp Framework
	Templates, Users, and Google Accounts
	Using Python Virtual Environments
	Datastore Models and Web Forms
	The Development Server Console
	Caching with Memcache
	The Python Interactive Console

	Registering the Application
	Uploading the Application
	Testing the App
	Enabling Billing

	Chapter 3. Configuring an Application
	The App Engine Architecture
	Configuring a Python App
	Runtime Versions

	App IDs and Versions
	Multithreading
	Request Handlers
	Static Files and Resource Files
	MIME Types
	Cache Expiration

	Domain Names
	Google Apps
	Configuring Secure Connections
	Secure Connections with Custom Domains
	Authorization with Google Accounts
	Environment Variables
	Inbound Services
	Custom Error Responses
	Python Libraries
	Built-in Handlers
	Includes

	Chapter 4. Request Handlers and Instances
	The Runtime Environment
	The Sandbox
	Quotas and Limits
	The Python Runtime Environment

	The Request Handler Abstraction
	Introducing Instances
	Request Scheduling and Pending Latency
	Warmup Requests
	Resident Instances
	Instance Classes and Utilization
	Instance Hours and Billing
	The Instances Console Panel
	Traffic Splitting

	Chapter 5. Using Modules
	An Example Layout
	Configuring Modules
	Manual and Basic Scaling
	Manual Scaling and Versions

	Startup Requests
	Shutdown Hooks
	Background Threads
	Modules and the Development Server
	Deploying Modules
	Addressing Modules with URLs
	Calling Modules from Other Modules
	Module URLs and Secure Connections
	Module URLs and Custom Domains

	Dispatching Requests to Modules
	Starting and Stopping Modules
	Managing and Deleting Modules and Versions
	The Modules API
	An Always-On Example

	Chapter 6. Datastore Entities
	Entities, Keys, and Properties
	Introducing the Python Datastore API
	Property Values
	Strings, Text, and Bytes
	Unset Versus the Null Value
	Multivalued Properties

	Keys and Key Objects
	Using Entities
	Getting Entities Using Keys
	Inspecting Entity Objects
	Saving Entities
	Deleting Entities

	Allocating System IDs
	The Development Server and the Datastore

	Chapter 7. Datastore Queries
	Queries and Kinds
	Query Results and Keys
	The Query API
	The Query Class
	GQL
	Retrieving Results
	Keys-Only Queries

	Introducing Indexes
	Automatic Indexes and Simple Queries
	All Entities of a Kind
	One Equality Filter
	Greater-Than and Less-Than Filters
	One Sort Order
	Queries on Keys
	Kindless Queries

	Custom Indexes and Complex Queries
	Multiple Sort Orders
	Filters on Multiple Properties
	Multiple Equality Filters

	Not-Equal and IN Filters
	Unset and Nonindexed Properties
	Sort Orders and Value Types
	Queries and Multivalued Properties
	MVPs in Code
	MVPs and Equality Filters
	MVPs and Inequality Filters
	MVPs and Sort Orders
	Exploding Indexes

	Query Cursors
	Projection Queries
	Configuring Indexes

	Chapter 8. Datastore Transactions
	Entities and Entity Groups
	Keys, Paths, and Ancestors
	Ancestor Queries

	What Can Happen in a Transaction
	Transactional Reads
	Eventually Consistent Reads

	Transactions in Python
	How Entities Are Updated
	How Entities Are Read
	Batch Updates
	How Indexes Are Updated
	Cross-Group Transactions

	Chapter 9. Data Modeling with ndb
	Models and Properties
	Property Declarations
	Property Value Types
	Property Validation
	Nonindexed Properties
	Automatic Values
	Repeated Properties
	Serialized Properties
	Structured Properties
	Computed Properties
	Models and Schema Migration

	Modeling Relationships
	Model Inheritance
	Queries and PolyModels
	Creating Your Own Property Classes
	Validating Property Values
	Marshaling Value Types
	Accepting Arguments
	Implementing Automatic Values

	Automatic Batching
	Automatic Caching
	Setting the Cache Policy for a Kind
	More Complex Cache Policies
	Ignoring Caches per Call

	Chapter 10. Datastore Administration
	Inspecting the Datastore
	Managing Indexes
	Accessing Metadata from the App
	Querying Statistics
	Querying Metadata
	Index Status and Queries
	Entity Group Versions

	Remote Controls
	Setting Up the Remote API
	Using the Remote Shell Tool
	Using the Remote API from a Script

	Chapter 11. Using Google Cloud SQL with App Engine
	Choosing a Cloud SQL Instance
	Installing MySQL Locally
	Installing the MySQLdb Library
	Creating a Cloud SQL Instance
	Connecting to an Instance from Your Computer
	Setting Up a Database
	Connecting to the Database from App Engine
	Backup and Restore
	Exporting and Importing Data
	The gcloud sql Commands

	Chapter 12. The Memory Cache
	Calling Memcache from Python
	Keys and Values
	Setting Values
	Setting Values That Expire
	Adding and Replacing Values

	Getting Values
	Deleting Values
	Locking a Deleted Key

	Atomic Increment and Decrement
	Compare and Set
	Batching Calls to Memcache
	Memcache Administration
	Cache Statistics
	Flushing the Memcache

	Chapter 13. Fetching URLs and Web Resources
	Fetching URLs
	Outgoing HTTP Requests
	The URL
	The HTTP Method and Payload
	Request Headers

	HTTP over SSL (HTTPS)
	Request and Response Sizes
	Request Deadlines
	Handling Redirects
	Response Objects

	Chapter 14. Sending and Receiving Email Messages
	Sending Email Messages
	Sending Email from the Development Server
	Sender Addresses
	Recipients
	Attachments
	Sending Email

	Receiving Email Messages

	Chapter 15. Sending and Receiving Instant Messages with XMPP
	Inviting a User to Chat
	Sending Chat Messages
	Receiving Chat Messages
	Handling Commands over Chat

	Handling Error Messages
	Managing Presence
	Managing Subscriptions
	Managing Presence Updates
	Probing for Presence

	Chapter 16. Task Queues and Scheduled Tasks
	Configuring Task Queues
	Enqueuing a Task
	Task Parameters
	Payloads
	Task Names
	Countdowns and ETAs

	Push Queues
	Task Requests
	Processing Rates and Token Buckets
	Retrying Push Tasks

	Pull Queues
	Enqueuing Tasks to Pull Queues
	Leasing and Deleting Tasks
	Retrying Pull Queue Tasks

	Transactional Task Enqueueing
	Task Chaining
	Task Queue Administration
	Deferring Work
	Scheduled Tasks
	Configuring Scheduled Tasks
	Specifying Schedules

	Chapter 17. Optimizing Service Calls
	Calling Services Asynchronously
	Asynchronous Calls in Python

	Visualizing Calls with AppStats
	Installing AppStats
	Using the AppStats Console

	Chapter 18. The Django Web Application Framework
	Using the Bundled Django Library
	Creating a Django Project
	Hooking It Up to App Engine
	Creating a Django App
	Using Django Templates
	Using ndb with Django
	Using WTForms with ndb
	Using a Newer Version of Django
	Using Django with Google Cloud SQL

	Chapter 19. Managing Request Logs
	Writing to the Log
	Viewing Recent Logs
	Downloading Logs
	Logs Retention
	Querying Logs from the App
	Flushing the Log Buffer

	Chapter 20. Deploying and Managing Applications
	Uploading an Application
	Using Versions
	Managing Service Configuration
	App Engine Settings
	Managing Developers
	Quotas and Billing
	Getting Help

	Index
	About the Author

